def test_net(imageset, year, root_path, devkit_path, prefix, epoch, ctx): """ wrapper for detector :param imageset: image set to test on :param year: year of image set :param root_path: 'data' folder path :param devkit_path: 'VOCdevkit' folder path :param prefix: new model prefix :param epoch: new model epoch :param ctx: context to evaluate in :return: None """ # set up logger logger = logging.getLogger() logger.setLevel(logging.INFO) # load testing data voc, roidb = load_test_roidb(imageset, year, root_path, devkit_path) test_data = ROIIter(roidb, ctx=ctx, batch_size=1, shuffle=False, mode='test') # load model args, auxs = load_param(prefix, epoch, convert=True, ctx=ctx) # load symbol sym = get_symbol_vgg_test() # detect detector = Detector(sym, ctx, args, auxs) pred_eval(detector, test_data, voc, vis=False)
def test_rcnn(imageset, year, root_path, devkit_path, prefix, epoch, ctx, vis=False, has_rpn=True, proposal='rpn', end2end=False): # load symbol and testing data if has_rpn: # sym = get_vgg_test() config.TRAIN.AGNOSTIC = True config.END2END = 1 config.PIXEL_MEANS = np.array([[[0,0,0]]]) sym = resnext_101(num_class=21) config.TEST.HAS_RPN = True config.TEST.RPN_PRE_NMS_TOP_N = 6000 config.TEST.RPN_POST_NMS_TOP_N = 300 voc, roidb = load_gt_roidb(imageset, year, root_path, devkit_path) else: sym = get_vgg_rcnn_test() voc, roidb = eval('load_test_' + proposal + '_roidb')(imageset, year, root_path, devkit_path) # get test data iter test_data = ROIIter(roidb, batch_size=1, shuffle=False, mode='test') # load model args, auxs, _ = load_param(prefix, epoch, convert=True, ctx=ctx) # detect detector = Detector(sym, ctx, args, auxs) pred_eval(detector, test_data, voc, vis=vis)
def get_net(prefix, epoch, ctx): config.TRAIN.AGNOSTIC = True args, auxs, num_class = load_param(prefix, epoch, convert=True, ctx=ctx) sym = resnext_101(num_class=num_class) #sym = resnet_50(num_class=num_class) detector = Detector(sym, ctx, args, auxs) return detector
def test_rcnn(imageset, year, root_path, devkit_path, prefix, epoch, ctx, vis=False, has_rpn=True, proposal='rpn'): # load symbol and testing data if has_rpn: sym = get_vgg_test() config.TEST.HAS_RPN = True config.TEST.RPN_PRE_NMS_TOP_N = 6000 config.TEST.RPN_POST_NMS_TOP_N = 300 voc, roidb = load_gt_roidb(imageset, year, root_path, devkit_path) else: sym = get_vgg_rcnn_test() voc, roidb = eval('load_test_' + proposal + '_roidb')(imageset, year, root_path, devkit_path) # get test data iter test_data = ROIIter(roidb, batch_size=1, shuffle=False, mode='test') # load model args, auxs, _ = load_param(prefix, epoch, convert=True, ctx=ctx) # detect detector = Detector(sym, ctx, args, auxs) pred_eval(detector, test_data, voc, vis=vis)
def test_net(imageset, year, root_path, devkit_path, prefix, epoch, ctx, vis): # set up logger logger = logging.getLogger() logger.setLevel(logging.INFO) # load testing data voc, roidb = load_test_rpn_roidb(imageset, year, root_path, devkit_path) test_data = ROIIter(roidb, batch_size=1, shuffle=False, mode='test') # load model args, auxs = load_param(prefix, epoch, convert=True, ctx=ctx) # load symbol sym = get_vgg_rcnn_test() # detect detector = Detector(sym, ctx, args, auxs) pred_eval(detector, test_data, voc, vis=vis)
def get_net(prefix, epoch, ctx): args, auxs, num_class = load_param(prefix, epoch, convert=True, ctx=ctx) sym = get_vgg_test(num_classes=num_class) detector = Detector(sym, ctx, args, auxs) return detector
def get_net(prefix, epoch, ctx): args, auxs = load_param(prefix, epoch, convert=True, ctx=ctx) sym = get_vgg_rcnn_test() detector = Detector(sym, ctx, args, auxs) return detector