def cohort(data_dir, mouse_id): c = Cohort.init_from_files(data_dir, [mouse_id]) yield c
trials["reaction_time"] = trials.end - trials.start trials.loc[trials["outcome"] == Outcomes.MISSED, "reaction_time"] = np.nan trials.loc[trials["outcome"] == Outcomes.CANCELLED, "reaction_time"] = np.nan sns.stripplot( data=trials, x='day', y='reaction_time', hue='mouse_id', dodge=True, ) plt.show() if __name__ == '__main__': mouse_ids = [] for i in sys.argv[2:]: mouse_ids.append(i) if not mouse_ids: raise SystemError( f'Usage: {__file__} /path/to/json/folder mouse1 mouse2') cohort = Cohort.init_from_files( data_dir=sys.argv[1], mouse_ids=mouse_ids, ) main(cohort)
import seaborn as sns import pandas as pd from pixtools import utils from reach import Cohort from reach.session import Outcomes mouse_ids = [ "HFR18", "HFR29", "HFR30", ] cohort = Cohort.init_from_files( data_dir=Path( '~/duguidlab/CuedBehaviourAnalysis/Data/TrainingJSON').expanduser(), mouse_ids=mouse_ids, ) # Find best days results = pd.DataFrame(cohort.get_results()) results['correct'] = results['correct_l'] + results['correct_r'] results['incorrect'] = results['incorrect_l'] + results['incorrect_r'] best_days = [] max_rewards = [] incorrects = [] for mouse in mouse_ids: mouse_results = results[results['mouse_id'] == mouse] max_reward = mouse_results['correct'].max()