def preeditmovie(expt_raw_data_dir, expt_analyses_dir, positions, params):
    """
    Automated steps to perform prior to editing.

    """
    expt = os.path.basename(expt_analyses_dir)
    g = params['general']

    # First load or create log files for each position
    log.main(expt_raw_data_dir, expt_analyses_dir, positions, g['write_mode'])

    # Execute each position in succession
    for p in positions:
        # Update the terminal display
        read.updatelog(expt, p, 'preedit')
        print 'start position ' + p + ': ' + time.asctime()

        posn_raw_data_dir = os.path.join(expt_raw_data_dir, p)
        posn_analyses_dir = os.path.join(expt_analyses_dir, p)

        # Segmented files will be saved to a temporary directory
        temp_dir = os.path.join(posn_analyses_dir, 'temp')
        if g['write_mode'] == 0:
            read.rmkdir(temp_dir)
        else:
            read.cmkdir(temp_dir)

        # Pad with default parameters, and find frames to process
        frame_start, frame_stop = float('inf'), 0.
        for mode in MODES:
            print '---mode', mode
            d = params[mode]

            # Pad with default parameters as necessary
            d = eval('%s.workflow.fillparams(d)' % mode)

            # Find all .tif images of specified type in the given directory
            d['segment']['file_list'] = []
            for f in read.listfiles(posn_raw_data_dir, d['segment']['pattern']):
                j = read.getframenum(f, d['segment']['pattern'])
                if g['frame_range'][0] <= j < g['frame_range'][1]:
                    frame_start = min(frame_start, j)
                    frame_stop = max(frame_stop, j)
                    d['segment']['file_list'].append(f)
            frame_stop += 1


        # Create arguments for parallel processing
        args = [(posn_raw_data_dir, temp_dir,
                 MODES, copy.deepcopy(params)) for _ in range(g['num_procs'])]
        file_list = sorted(args[0][3]['phase']['segment']['file_list'])

        # # debug: select only a few files -BK
        # print 'initial frame stop', frame_stop
        # frame_stop = 500
        # file_list = file_list[:frame_stop]
        # # debug: select only a few files -BK

        inds = partition_indices(file_list, g['num_procs'])
        for (sta_ind, end_ind), arg in zip(inds, args):
            arg[3]['phase']['segment']['file_list'] = file_list[sta_ind:end_ind]


        # Process each block of frames in parallel
        parallel.main(preeditblock, args, g['num_procs'])
        print 'extract: ' + time.asctime()


        # Archive the output files into .zip files, then delete each .tif
        num_tifs = frame_stop - frame_start
        num_digits = int(np.ceil(np.log10(num_tifs + 1)))

        # Create new set of directories with pre-specified block size
        frames = range(frame_start, frame_stop-1, g['block_size'])
        frames.append(frame_stop)
        block_frames = zip(frames[:-1], frames[1:])

        # Make directories to hold files, named according to frames
        read.cmkdir(os.path.join(posn_analyses_dir, 'blocks'))
        block_dirs = []
        for j1, j2 in block_frames:
            strs = [str(v).zfill(num_digits) for v in (j1, j2)]
            v = os.path.join(posn_analyses_dir, 'blocks',
                             'frame{}-{}'.format(*strs))
            os.mkdir(v)
            block_dirs.append(v)

        for m in MODES:
            # The segmented .tif files will be stored in a .zip file
            zip_name = m.capitalize() + 'Segment'
            [read.cmkdir(os.path.join(v, zip_name)) for v in block_dirs]

            # Find all segmented .tif images and transfer to the new directories
            d = params[m]
            for f in read.listfiles(temp_dir, d['segment']['pattern']):
                j = read.getframenum(f, d['segment']['pattern'])
                for i, (j1, j2) in enumerate(block_frames):
                    if j1 <= j < j2:
                        old_name = os.path.join(temp_dir, f)
                        zip_dir = os.path.join(block_dirs[i], zip_name)
                        shutil.move(old_name, zip_dir)

            # Zip each directory of segmented .tif files
            old_dir = os.path.abspath(os.curdir)
            for v in block_dirs:
                os.chdir(v)
                archive_util.make_zipfile(zip_name, zip_name)
                shutil.rmtree(zip_name)
                os.chdir(old_dir)

            # Make temporary directories for data outputs
            dat_name = m.capitalize() + 'Data'
            [read.cmkdir(os.path.join(v, dat_name)) for v in block_dirs]

            # Find all analyzed .pickle files and transfer to the new directories
            f, e = os.path.splitext(d['segment']['pattern'])
            dat_pattern = (f + '.pickle' + e[4:])
            for f in read.listfiles(temp_dir, dat_pattern):
                j = read.getframenum(f, dat_pattern)
                for i, (j1, j2) in enumerate(block_frames):
                    if j1 <= j < j2:
                        # Transfer each frame to the correct block
                        old_name = os.path.join(temp_dir, f)
                        dat_dir = os.path.join(block_dirs[i], dat_name)
                        shutil.move(old_name, dat_dir)

            # Concatenate each set of files into a DataFrame for each parameter
            for block_dir in block_dirs:
                dat_dir = os.path.join(block_dir, dat_name)
                data = []
                for u in os.listdir(dat_dir):
                    dat_file = os.path.join(dat_dir, u)
                    try:
                        d = read_pickle(dat_file)
                    except:
                        pass
                    data.append(d)
                df = concat(data)
                df = df.reindex(sorted(df.index))
                for c in df.columns:
                    df[c].to_pickle(os.path.join(block_dir, c + '.pickle'))
                shutil.rmtree(dat_dir)
        print 'shuffle: ' + time.asctime()

        # Delete all temporary files
        shutil.rmtree(temp_dir)
        '''
        block_dirs = [os.path.join(posn_analyses_dir, 'blocks', v) for v in
                      os.listdir(os.path.join(posn_analyses_dir, 'blocks'))
                      if 'frame' in v]
        '''
        # Track the blocks in parallel
        args = []
        for v in block_dirs:
            output_file = os.path.join(v, 'Trace.pickle')
            if os.path.isfile(output_file):
                os.remove(output_file)
            args.append((v, output_file, params['phase']['track']))
        parallel.main(trackblock, args, g['num_procs'])
        print 'track: ' + time.asctime()

        # Stitch independently-tracked trajectories together
        stitchblocks(block_dirs, params['phase']['track'])
        print 'stitch: ' + time.asctime()

        # Collate the data for manual editing
        output_file = os.path.join(posn_analyses_dir, 'edits.pickle')
        collateblocks(block_dirs, output_file, params['phase']['collate'])
        print 'collate: ' + time.asctime()

        # Update the experiment log file
        read.updatelog(expt, p, 'preedit', expt_analyses_dir)
        print 'final: ' + time.asctime()
def preeditmovie(expt_raw_data_dir, expt_analyses_dir, positions, params):
    """
    Automated steps to perform prior to editing.

    """
    expt = os.path.basename(expt_analyses_dir)
    g = params['general']

    # First load or create log files for each position
    log.main(expt_raw_data_dir, expt_analyses_dir, positions, g['write_mode'])

    # Execute each position in succession
    for p in positions:
        # Update the terminal display
        read.updatelog(expt, p, 'preedit')
        print 'start position ' + p + ': ' + time.asctime()

        posn_raw_data_dir = os.path.join(expt_raw_data_dir, p)
        posn_analyses_dir = os.path.join(expt_analyses_dir, p)

        # Segmented files will be saved to a temporary directory
        temp_dir = os.path.join(posn_analyses_dir, 'temp')
        if g['write_mode'] == 0:
            read.rmkdir(temp_dir)
        else:
            read.cmkdir(temp_dir)

        # Pad with default parameters, and find frames to process
        frame_start, frame_stop = float('inf'), 0.
        for mode in MODES:
            print '---mode', mode
            d = params[mode]

            # Pad with default parameters as necessary
            d = eval('%s.workflow.fillparams(d)' % mode)

            # Find all .tif images of specified type in the given directory
            d['segment']['file_list'] = []
            for f in read.listfiles(posn_raw_data_dir,
                                    d['segment']['pattern']):
                j = read.getframenum(f, d['segment']['pattern'])
                if g['frame_range'][0] <= j < g['frame_range'][1]:
                    frame_start = min(frame_start, j)
                    frame_stop = max(frame_stop, j)
                    d['segment']['file_list'].append(f)
            frame_stop += 1

        # Create arguments for parallel processing
        args = [(posn_raw_data_dir, temp_dir, MODES, copy.deepcopy(params))
                for _ in range(g['num_procs'])]
        file_list = sorted(args[0][3]['phase']['segment']['file_list'])

        # # debug: select only a few files -BK
        # print 'initial frame stop', frame_stop
        # frame_stop = 500
        # file_list = file_list[:frame_stop]
        # # debug: select only a few files -BK

        inds = partition_indices(file_list, g['num_procs'])
        for (sta_ind, end_ind), arg in zip(inds, args):
            arg[3]['phase']['segment']['file_list'] = file_list[
                sta_ind:end_ind]

        # Process each block of frames in parallel
        parallel.main(preeditblock, args, g['num_procs'])
        print 'extract: ' + time.asctime()

        # Archive the output files into .zip files, then delete each .tif
        num_tifs = frame_stop - frame_start
        num_digits = int(np.ceil(np.log10(num_tifs + 1)))

        # Create new set of directories with pre-specified block size
        frames = range(frame_start, frame_stop - 1, g['block_size'])
        frames.append(frame_stop)
        block_frames = zip(frames[:-1], frames[1:])

        # Make directories to hold files, named according to frames
        read.cmkdir(os.path.join(posn_analyses_dir, 'blocks'))
        block_dirs = []
        for j1, j2 in block_frames:
            strs = [str(v).zfill(num_digits) for v in (j1, j2)]
            v = os.path.join(posn_analyses_dir, 'blocks',
                             'frame{}-{}'.format(*strs))
            os.mkdir(v)
            block_dirs.append(v)

        for m in MODES:
            # The segmented .tif files will be stored in a .zip file
            zip_name = m.capitalize() + 'Segment'
            [read.cmkdir(os.path.join(v, zip_name)) for v in block_dirs]

            # Find all segmented .tif images and transfer to the new directories
            d = params[m]
            for f in read.listfiles(temp_dir, d['segment']['pattern']):
                j = read.getframenum(f, d['segment']['pattern'])
                for i, (j1, j2) in enumerate(block_frames):
                    if j1 <= j < j2:
                        old_name = os.path.join(temp_dir, f)
                        zip_dir = os.path.join(block_dirs[i], zip_name)
                        shutil.move(old_name, zip_dir)

            # Zip each directory of segmented .tif files
            old_dir = os.path.abspath(os.curdir)
            for v in block_dirs:
                os.chdir(v)
                archive_util.make_zipfile(zip_name, zip_name)
                shutil.rmtree(zip_name)
                os.chdir(old_dir)

            # Make temporary directories for data outputs
            dat_name = m.capitalize() + 'Data'
            [read.cmkdir(os.path.join(v, dat_name)) for v in block_dirs]

            # Find all analyzed .pickle files and transfer to the new directories
            f, e = os.path.splitext(d['segment']['pattern'])
            dat_pattern = (f + '.pickle' + e[4:])
            for f in read.listfiles(temp_dir, dat_pattern):
                j = read.getframenum(f, dat_pattern)
                for i, (j1, j2) in enumerate(block_frames):
                    if j1 <= j < j2:
                        # Transfer each frame to the correct block
                        old_name = os.path.join(temp_dir, f)
                        dat_dir = os.path.join(block_dirs[i], dat_name)
                        shutil.move(old_name, dat_dir)

            # Concatenate each set of files into a DataFrame for each parameter
            for block_dir in block_dirs:
                dat_dir = os.path.join(block_dir, dat_name)
                data = []
                for u in os.listdir(dat_dir):
                    dat_file = os.path.join(dat_dir, u)
                    try:
                        d = read_pickle(dat_file)
                    except:
                        pass
                    data.append(d)
                df = concat(data)
                df = df.reindex(sorted(df.index))
                for c in df.columns:
                    df[c].to_pickle(os.path.join(block_dir, c + '.pickle'))
                shutil.rmtree(dat_dir)
        print 'shuffle: ' + time.asctime()

        # Delete all temporary files
        shutil.rmtree(temp_dir)
        '''
        block_dirs = [os.path.join(posn_analyses_dir, 'blocks', v) for v in
                      os.listdir(os.path.join(posn_analyses_dir, 'blocks'))
                      if 'frame' in v]
        '''
        # Track the blocks in parallel
        args = []
        for v in block_dirs:
            output_file = os.path.join(v, 'Trace.pickle')
            if os.path.isfile(output_file):
                os.remove(output_file)
            args.append((v, output_file, params['phase']['track']))
        parallel.main(trackblock, args, g['num_procs'])
        print 'track: ' + time.asctime()

        # Stitch independently-tracked trajectories together
        stitchblocks(block_dirs, params['phase']['track'])
        print 'stitch: ' + time.asctime()

        # Collate the data for manual editing
        output_file = os.path.join(posn_analyses_dir, 'edits.pickle')
        collateblocks(block_dirs, output_file, params['phase']['collate'])
        print 'collate: ' + time.asctime()

        # Update the experiment log file
        read.updatelog(expt, p, 'preedit', expt_analyses_dir)
        print 'final: ' + time.asctime()
Esempio n. 3
0
    def export(self, key, upload=False):
        """
        Export data to a CSV file.

        args:
            key (str): name of variable to export

        kwargs:
            upload (bool): upload to shared folder at time of exporting

        """
        if key not in self.TXT_KEYS:
            raise ValueError("'%s' is not in TXT_KEYS" % key)

        has_var = self[0].has_key(key)
        if not has_var:
            try:
                self.loadvar(key)
            except IOError:
                pass

        # The file name is auto-generated, with 3 decimals and tab delimiters
        read.rmkdir(self.tables_dir)
        file_name = os.path.join(self.tables_dir,
                                 self.expt_name + '_' + key + '.txt')
        fmt = '%.3f'
        dlm = '\t'

        # Recast the DataFrame into a matrix, padded with NaN values
        nans = np.ones((self.num_traces, self.num_frames)) * np.nan
        if key in ('EdgeSpline', 'MidSpline'):
            # Load the StalkedPole and SwarmerPole values
            has_stalked = self[0].has_key('StalkedPole')
            if not has_stalked:
                self.loadvar('StalkedPole')
            has_swarmer = self[0].has_key('SwarmerPole')
            if not has_swarmer:
                self.loadvar('SwarmerPole')

            # Export data to a new Spline folder
            top_dir = os.path.join(self.tables_dir, self.expt_name + '_' + key)
            read.cmkdir(top_dir)

            # Number of digits determined by the number of cells traces
            num_digits = int(np.ceil(np.log10(self.num_traces + 1)))

            # Loop over each position then cell separately
            k = 0
            u = np.linspace(0., 1., 1e3)
            for i in range(self.num_posns):
                for t in range(len(self[i]['Trace'])):
                    j = k + t + 1
                    data = [[] for _ in range(5)]
                    for f, tck in self[i, t][key].iteritems():
                        if tck:
                            # Start indexing the frames at 1
                            data[0].append(f + 1)

                            # Find the indexes of the breaks
                            xs = np.asarray(zip(*splev(u, tck)))
                            p1 = self[i, t]['StalkedPole'].ix[f]
                            p2 = self[i, t]['SwarmerPole'].ix[f]
                            k1 = np.argmin([norm(v) for v in p1 - xs])
                            k2 = np.argmin([norm(v) for v in p2 - xs])
                            data[1].append((u[k1], u[k2]))

                            # Save the spline values
                            data[2].append(tck[0])
                            data[3].append(tck[1][0])
                            data[4].append(tck[1][1])

                    # Export data to a subfolder for each trace
                    sub_dir = os.path.join(top_dir,
                                           'trace' + str(j).zfill(num_digits))
                    read.rmkdir(sub_dir)

                    # Save four files for each trace
                    file_names = []
                    for v in ('Frames', 'Breaks', 'Knots', 'ControlX',
                              'ControlY'):
                        n = os.path.join(sub_dir,
                                         self.expt_name + '_' + v + '.txt')
                        file_names.append(n)

                    # Save each value as an array with no empty values
                    np.savetxt(file_names[0],
                               data[0],
                               fmt='%.0f',
                               delimiter=dlm)
                    for n, d in zip(file_names[1:], data[1:]):
                        with open(n, 'w') as f:
                            for v in d:
                                f.write(dlm.join([fmt % x for x in v]) + '\n')
                k += (t + 1)
            if not has_stalked:
                self.delvar('StalkedPole')
            if not has_swarmer:
                self.delvar('SwarmerPole')
        elif key in ('Event', ):
            # Export pump metadata
            for i, v in enumerate(self.expt_data['Pumps']):
                n = str(i + 1).join(os.path.splitext(file_name))
                with codecs.open(n, encoding='utf-8', mode='w') as f:
                    f.write(v['Solution'] + '\n')
                    f.write('%s\t%s\t%s\n' % (v['Units'], 'TimeOn', 'TimeOff'))
                    for j in range(len(v['Rate'])):
                        f.write(
                            '%.3f\t%.3f\t%.3f\n' %
                            (v['Rate'][j], v['Time'][j][0], v['Time'][j][1]))
        elif key in ('Label', ):
            data = nans.copy()
            k = 0
            for i in range(self.num_posns):
                for (t, f), v in self[i][key].iteritems():
                    j = k + t
                    data[j, f] = v
                k += (t + 1)
            np.savetxt(file_name, data, fmt='%.0f', delimiter=dlm)
        elif key in ('Generation', ):
            # Save the generation counts (start indexing from 1)
            data = nans.copy()
            k = 0
            for i in range(self.num_posns):
                for t, v in enumerate(self[i]['Gens']):
                    for u, f in enumerate(v):
                        j = k + t
                        data[j, f] = u
                k += (t + 1)
            data += 1
            np.savetxt(file_name, data, fmt='%.0f', delimiter=dlm)
        elif key in ('DivisionTime', ):
            taus = []
            for i in range(self.num_posns):
                for v in self[i]['Taus']:
                    taus.append(v)
            max_gens = max([len(v) for v in taus])
            data = np.ones((self.num_traces, max_gens)) * np.nan
            for i, v in enumerate(taus):
                n = len(v)
                data[i][:n] = v
            np.savetxt(file_name, data, fmt=fmt, delimiter=dlm)
        elif key in ('Centroid', 'StalkedPole', 'SwarmerPole'):
            for a, n in enumerate(('X', 'Y')):
                axis_name = n.join(os.path.splitext(file_name))
                data = nans.copy()
                k = 0
                for i in range(self.num_posns):
                    for (t, f), v in self[i][key].iteritems():
                        j = k + t
                        data[j, f] = v[a]
                    k += (t + 1)
                np.savetxt(axis_name, data, fmt=fmt, delimiter=dlm)
        elif key in ('FourierFit', 'FourierCoef'):
            # Export data to a new folder
            top_dir = os.path.join(self.tables_dir, self.expt_name + '_' + key)
            read.cmkdir(top_dir)

            if 'FourierFit' == key:
                # Old representation
                num_coefs = 10
                coef_range = range(num_coefs)
            elif 'FourierCoef' == key:
                # New representation
                num_coefs = 20
                coef_range = range(-num_coefs, num_coefs + 1)

            for c in coef_range:
                for n in ('Real', 'Imag'):
                    file_name = os.path.join(
                        top_dir, self.expt_name + '_' + key + str(c).zfill(2) +
                        n + '.txt')
                    data = nans.copy()
                    k = 0
                    for i in range(self.num_posns):
                        for (t, f), v in self[i][key].iteritems():
                            j = k + t
                            data[j,
                                 f] = v[c].real if n == 'Real' else v[c].imag
                        k += (t + 1)
                    np.savetxt(file_name, data, fmt=fmt, delimiter=dlm)
        elif key in ('WidthsSmoothed', ):
            # Export data to a new Widths folder
            top_dir = os.path.join(self.tables_dir,
                                   self.expt_name + '_' + 'Widths')
            read.cmkdir(top_dir)

            num_points = 500
            for c in xrange(num_points):
                file_name = os.path.join(
                    top_dir,
                    self.expt_name + '_' + 'Widths' + str(c).zfill(3) + '.txt')

                # Recast the DataFrame into a matrix, padded with NaN values
                data = nans.copy()
                k = 0
                for i in range(self.num_posns):
                    for (t, f), v in self[i][key].iteritems():
                        j = k + t
                        if np.any(v):
                            data[j, f] = v[c]
                    k += (t + 1)
                np.savetxt(file_name, data, fmt=fmt, delimiter=dlm)
        elif key in ('Time', ):
            # Recast the vector into a matrix
            data = nans.copy()
            k = 0
            for i in range(self.num_posns):
                v = self[i]['TimeP']
                for t, _ in enumerate(self[i]['Trace']):
                    j = k + t
                    data[j] = v
                k += (t + 1)
            np.savetxt(file_name, data, fmt=fmt, delimiter=dlm)
        elif key in ('Mother', ):
            # Save the identity of the mother (start indexing from 1)
            data = np.ones(self.num_traces) * np.nan
            k = 0
            for i in range(self.num_posns):
                for t, v in enumerate(self[i]['Mother']):
                    if v is not None and v in self[i]['Trace']:
                        d = k + t
                        m = k + self[i]['Trace'].index(v)
                        data[d] = m
                k += (t + 1)
            data += 1
            np.savetxt(file_name, data, fmt='%.0f', delimiter=dlm)
        elif key in ('WidthMean', ):
            # Load the Widths values
            has_widths = self[0].has_key('Widths')
            if not has_widths:
                self.loadvar('Widths')

            # Recast the DataFrame into a matrix, padded with NaN values
            data = nans.copy()
            k = 0
            for i in range(self.num_posns):
                for (t, f), v in self[i]['Widths'].iteritems():
                    j = k + t
                    data[j, f] = np.nanmean(v)
                k += (t + 1)
            np.savetxt(file_name, data, fmt=fmt, delimiter=dlm)

            if not has_widths:
                self.delvar('Widths')
        else:
            # Recast the DataFrame into a matrix, padded with NaN values
            data = nans.copy()
            k = 0
            for i in range(self.num_posns):
                for (t, f), v in self[i][key].iteritems():
                    j = k + t
                    data[j, f] = v
                k += (t + 1)
            np.savetxt(file_name, data, fmt=fmt, delimiter=dlm)

        if upload:
            self.upload(key)

        if not has_var:
            self.delvar(key)
    def export(self, key, upload=False):
        """
        Export data to a CSV file.

        args:
            key (str): name of variable to export

        kwargs:
            upload (bool): upload to shared folder at time of exporting

        """
        if key not in self.TXT_KEYS:
            raise ValueError("'%s' is not in TXT_KEYS" % key)

        has_var = self[0].has_key(key)
        if not has_var:
            try:
                self.loadvar(key)
            except IOError:
                pass

        # The file name is auto-generated, with 3 decimals and tab delimiters
        read.rmkdir(self.tables_dir)
        file_name = os.path.join(self.tables_dir,
                                 self.expt_name + '_' + key + '.txt')
        fmt = '%.3f'
        dlm = '\t'

        # Recast the DataFrame into a matrix, padded with NaN values
        nans = np.ones((self.num_traces, self.num_frames)) * np.nan
        if key in ('EdgeSpline', 'MidSpline'):
            # Load the StalkedPole and SwarmerPole values
            has_stalked = self[0].has_key('StalkedPole')
            if not has_stalked:
                self.loadvar('StalkedPole')
            has_swarmer = self[0].has_key('SwarmerPole')
            if not has_swarmer:
                self.loadvar('SwarmerPole')

            # Export data to a new Spline folder
            top_dir = os.path.join(self.tables_dir, self.expt_name + '_' + key)
            read.cmkdir(top_dir)

            # Number of digits determined by the number of cells traces
            num_digits = int(np.ceil(np.log10(self.num_traces + 1)))

            # Loop over each position then cell separately
            k = 0
            u = np.linspace(0., 1., 1e3)
            for i in range(self.num_posns):
                for t in range(len(self[i]['Trace'])):
                    j = k + t + 1
                    data = [[] for _ in range(5)]
                    for f, tck in self[i, t][key].iteritems():
                        if tck:
                            # Start indexing the frames at 1
                            data[0].append(f + 1)

                            # Find the indexes of the breaks
                            xs = np.asarray(zip(*splev(u, tck)))
                            p1 = self[i, t]['StalkedPole'].ix[f]
                            p2 = self[i, t]['SwarmerPole'].ix[f]
                            k1 = np.argmin([norm(v) for v in p1 - xs])
                            k2 = np.argmin([norm(v) for v in p2 - xs])
                            data[1].append((u[k1], u[k2]))

                            # Save the spline values
                            data[2].append(tck[0])
                            data[3].append(tck[1][0])
                            data[4].append(tck[1][1])

                    # Export data to a subfolder for each trace
                    sub_dir = os.path.join(top_dir, 'trace' +
                                           str(j).zfill(num_digits))
                    read.rmkdir(sub_dir)

                    # Save four files for each trace
                    file_names = []
                    for v in ('Frames', 'Breaks', 'Knots',
                              'ControlX', 'ControlY'):
                        n = os.path.join(sub_dir,
                                         self.expt_name + '_' + v + '.txt')
                        file_names.append(n)

                    # Save each value as an array with no empty values
                    np.savetxt(file_names[0], data[0],
                               fmt='%.0f', delimiter=dlm)
                    for n, d in zip(file_names[1:], data[1:]):
                        with open(n, 'w') as f:
                            for v in d:
                                f.write(dlm.join([fmt % x for x in v]) + '\n')
                k += (t + 1)
            if not has_stalked:
                self.delvar('StalkedPole')
            if not has_swarmer:
                self.delvar('SwarmerPole')
        elif key in ('Event', ):
            # Export pump metadata
            for i, v in enumerate(self.expt_data['Pumps']):
                n = str(i+1).join(os.path.splitext(file_name))
                with codecs.open(n, encoding='utf-8', mode='w') as f:
                    f.write(v['Solution'] + '\n')
                    f.write('%s\t%s\t%s\n' % (v['Units'], 'TimeOn', 'TimeOff'))
                    for j in range(len(v['Rate'])):
                        f.write('%.3f\t%.3f\t%.3f\n' %
                            (v['Rate'][j], v['Time'][j][0], v['Time'][j][1]))
        elif key in ('Label', ):
            data = nans.copy()
            k = 0
            for i in range(self.num_posns):
                for (t, f), v in self[i][key].iteritems():
                    j = k + t
                    data[j, f] = v
                k += (t + 1)
            np.savetxt(file_name, data, fmt='%.0f', delimiter=dlm)
        elif key in ('Generation', ):
            # Save the generation counts (start indexing from 1)
            data = nans.copy()
            k = 0
            for i in range(self.num_posns):
                for t, v in enumerate(self[i]['Gens']):
                    for u, f in enumerate(v):
                        j = k + t
                        data[j, f] = u
                k += (t + 1)
            data += 1
            np.savetxt(file_name, data, fmt='%.0f', delimiter=dlm)
        elif key in ('DivisionTime', ):
            taus = []
            for i in range(self.num_posns):
                for v in self[i]['Taus']:
                    taus.append(v)
            max_gens = max([len(v) for v in taus])
            data = np.ones((self.num_traces, max_gens)) * np.nan
            for i, v in enumerate(taus):
                n = len(v)
                data[i][:n] = v
            np.savetxt(file_name, data, fmt=fmt, delimiter=dlm)
        elif key in ('Centroid', 'StalkedPole', 'SwarmerPole'):
            for a, n in enumerate(('X', 'Y')):
                axis_name = n.join(os.path.splitext(file_name))
                data = nans.copy()
                k = 0
                for i in range(self.num_posns):
                    for (t, f), v in self[i][key].iteritems():
                        j = k + t
                        data[j, f] = v[a]
                    k += (t + 1)
                np.savetxt(axis_name, data, fmt=fmt, delimiter=dlm)
        elif key in ('FourierFit', 'FourierCoef'):
            # Export data to a new folder
            top_dir = os.path.join(self.tables_dir, self.expt_name + '_' + key)
            read.cmkdir(top_dir)

            if 'FourierFit' == key:
                # Old representation
                num_coefs = 10
                coef_range = range(num_coefs)
            elif 'FourierCoef' == key:
                # New representation
                num_coefs = 20
                coef_range = range(-num_coefs, num_coefs+1)

            for c in coef_range:
                for n in ('Real', 'Imag'):
                    file_name = os.path.join(top_dir, self.expt_name + '_' + key
                                             + str(c).zfill(2) + n + '.txt')
                    data = nans.copy()
                    k = 0
                    for i in range(self.num_posns):
                        for (t, f), v in self[i][key].iteritems():
                            j = k + t
                            data[j, f] = v[c].real if n == 'Real' else v[c].imag
                        k += (t + 1)
                    np.savetxt(file_name, data, fmt=fmt, delimiter=dlm)
        elif key in ('WidthsSmoothed', ):
            # Export data to a new Widths folder
            top_dir = os.path.join(self.tables_dir, self.expt_name + '_' + 'Widths')
            read.cmkdir(top_dir)

            num_points = 500
            for c in xrange(num_points):
                file_name = os.path.join(top_dir, self.expt_name + '_' + 'Widths'
                                         + str(c).zfill(3) + '.txt')

                # Recast the DataFrame into a matrix, padded with NaN values
                data = nans.copy()
                k = 0
                for i in range(self.num_posns):
                    for (t, f), v in self[i][key].iteritems():
                        j = k + t
                        if np.any(v):
                            data[j, f] = v[c]
                    k += (t + 1)
                np.savetxt(file_name, data, fmt=fmt, delimiter=dlm)
        elif key in ('Time', ):
            # Recast the vector into a matrix
            data = nans.copy()
            k = 0
            for i in range(self.num_posns):
                v = self[i]['TimeP']
                for t, _ in enumerate(self[i]['Trace']):
                    j = k + t
                    data[j] = v
                k += (t + 1)
            np.savetxt(file_name, data, fmt=fmt, delimiter=dlm)
        elif key in ('Mother', ):
            # Save the identity of the mother (start indexing from 1)
            data = np.ones(self.num_traces) * np.nan
            k = 0
            for i in range(self.num_posns):
                for t, v in enumerate(self[i]['Mother']):
                    if v is not None and v in self[i]['Trace']:
                        d = k + t
                        m = k + self[i]['Trace'].index(v)
                        data[d] = m
                k += (t + 1)
            data += 1
            np.savetxt(file_name, data, fmt='%.0f', delimiter=dlm)
        elif key in ('WidthMean', ):
            # Load the Widths values
            has_widths = self[0].has_key('Widths')
            if not has_widths:
                self.loadvar('Widths')

            # Recast the DataFrame into a matrix, padded with NaN values
            data = nans.copy()
            k = 0
            for i in range(self.num_posns):
                for (t, f), v in self[i]['Widths'].iteritems():
                    j = k + t
                    data[j, f] = np.nanmean(v)
                k += (t + 1)
            np.savetxt(file_name, data, fmt=fmt, delimiter=dlm)

            if not has_widths:
                self.delvar('Widths')
        else:
            # Recast the DataFrame into a matrix, padded with NaN values
            data = nans.copy()
            k = 0
            for i in range(self.num_posns):
                for (t, f), v in self[i][key].iteritems():
                    j = k + t
                    data[j, f] = v
                k += (t + 1)
            np.savetxt(file_name, data, fmt=fmt, delimiter=dlm)

        if upload:
            self.upload(key)

        if not has_var:
            self.delvar(key)