Esempio n. 1
0
def extract_theta_dot_xi(dataFiles):
    """ return the polytroic index assosiated solution for every given binary file path

    Positional Arguments:
        dataFiles -- iterator of path to binary data files produced from c executable itegrate

    Returns -> (N, STATE):
        STATE -- List of data from binary file paths (parallel to N)
        META -- Metadata extracted from header of dump files
    """
    STATE = list()
    META = list()
    for dataFile in dataFiles:
        state, metadata = load_C_output(dataFile)
        META.append(metadata)
        STATE.append(state)
    return STATE, META
import numpy as np
from readCPython import load_C_output

if __name__ == "__main__":
    state, meta = load_C_output(
        "../data/laneEmdenDataFile_1.000000-nonDegenerate.dat")
    ftheta = lambda xi: np.sin(xi) / xi

    theta = ftheta(state[0])

    print("Mean Differnce between exact and numeric solution: {}".format(
        np.mean(theta - state[1])))
Esempio n. 3
0
if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Plot WD Mass vs Central Density")
    parser.add_argument("files", nargs="+", type=str, help="Path to file")
    parser.add_argument("-o", "--output", type=str, help="save path")
    parser.add_argument('-t',
                        '--tex',
                        action='store_true',
                        help='Use the tex rendering engine when plotting')

    args = parser.parse_args()

    rho_c = list()
    R = list()
    for file in args.files:
        state, meta = load_C_output(file)

        # convert dimensionless values to physical equivilents
        rho_c.append(3.789e6 * meta['theta_c'])
        xi1, theta_xi1 = find_root(state[0], state[1])
        R.append(alpha * xi1 * 100)

    set_style(usetex=args.tex)
    fig, ax = plt.subplots(1, 1, figsize=(10, 7))
    ax.semilogx(rho_c, R, 'kx')

    ax.set_ylabel(r'Radius [R$_{\odot}$/100]', fontsize=17)
    ax.set_xlabel(r'Central Density [g cm$^{-3}$]', fontsize=17)
    plt.savefig(args.output, bbox_inches='tight')
Esempio n. 4
0
                        default=0.24)
    parser.add_argument("-Z", type=float, help="Meltallicity", default=0)

    parser.add_argument("-o",
                        "--output",
                        type=str,
                        help="Output Location",
                        default="NULL")

    args = parser.parse_args()

    # Exctract the polytropic index from the file name convention
    n = float(args.path.split('/')[-1].split('_')[1][:-7])

    # Load data from the c dump binary
    state, metadata = load_C_output(args.path)
    xi1, thetaXi1 = find_root(state[0], state[1])
    dthetaXdxi1, _ = find_root(state[2], state[1])

    # Select only the portion of the the solution less than the radius of the star
    conditional = state[0] <= xi1

    xi = state[0][conditional]
    theta = state[1][conditional]
    dtheta = state[2][conditional]

    M = args.mass

    # Select a-priori radius or given luminosity and temperature
    if args.radius:
        R = args.radius
Esempio n. 5
0
    parser.add_argument("-o", "--output", type=str, help="save path")
    parser.add_argument('-t',
                        '--tex',
                        action='store_true',
                        help='Use the tex rendering engine when plotting')
    parser.add_argument('-m',
                        '--mass',
                        nargs="+",
                        type=float,
                        help='Given mass')

    args = parser.parse_args()

    masses = list()
    for file in args.files:
        state, meta = load_C_output(file, oh=True)

        # convert dimensionless values to physical equivilents
        masses.append(0.09 * meta['m'])
    masses = np.array(masses)
    set_style(usetex=args.tex)
    fig, ax = plt.subplots(1, 1, figsize=(10, 7))
    for mass in args.mass:
        # select the closest mass to the given mass
        idx = (np.abs(masses - mass)).argmin()
        state, meta = load_C_output(args.files[idx])
        ax.plot(alpha * state[0] * 100,
                3.789e6 * state[1],
                label=r"M: {:0.2f} M$_{{\odot}}$".format(0.09 * meta['m']))

    ax.legend(fontsize=17)