def run(self): # 计数器初始化 count = 0 # 读取配置 data = read_config.read() cap, ok, frame, length = read_frame.cam_init(self.address) # 背景减除器初始化 fgbg = frame_background.background_init() tracker_list = [] detect_list = [] result_list = [] while True: ret, frame = cap.read() if ret: rgbImage = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) h, w, ch = rgbImage.shape bytesPerLine = ch * w convertToQtFormat = QImage(rgbImage.data, w, h, bytesPerLine, QImage.Format_RGB888) p = convertToQtFormat.scaled(640, 480, Qt.KeepAspectRatio) self.changePixmap.emit(p) if self.method: # https://stackoverflow.com/a/55468544/6622587 step = 10 diff = frame_background.process(fgbg, frame, count, step) if diff is not 0: # 当前帧的目标检测 detect_list, detected_img, contour = frame_detection.detectobj(diff, frame) new_detect_list = frame_tracker.list_compare(detect_list, result_list) Added_tracker_list = frame_tracker.init_tracker(frame, new_detect_list) tracker_list += Added_tracker_list tracked_img, result_list = frame_tracker.update_tracker(frame, tracker_list) frame = detected_img rgbImage = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) h, w, ch = rgbImage.shape bytesPerLine = ch * w convertToQtFormat = QImage(rgbImage.data, w, h, bytesPerLine, QImage.Format_RGB888) p = convertToQtFormat.scaled(640, 480, Qt.KeepAspectRatio) self.detected.emit(p) frame = tracked_img rgbImage = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) h, w, ch = rgbImage.shape bytesPerLine = ch * w convertToQtFormat = QImage(rgbImage.data, w, h, bytesPerLine, QImage.Format_RGB888) p = convertToQtFormat.scaled(640, 480, Qt.KeepAspectRatio) self.tracked.emit(p)
def aciLogIn(apic=None): """Log in to ACI.""" # Get the credentials config = read_config.read() # If an existing session wasn't supplied, make a new session if not isinstance(apic, Node): try: apic = Node(config['ACI APIC']['url']) except MetaError as err: # This implies that the meta hasn't been downloaded yet raise Exception("The ACI Meta information hasn't been "\ "downloaded from the controller. To fix this, run:"\ "\nrmetagen.py -u admin 10.43.40.11") from err log.info('APIC Login: {}'.format( apic.methods.Login(config['ACI APIC']['username'], config['ACI APIC']['password']).POST())) return apic
#!/usr/bin/env python '''Documentation to be written''' # '%(folder_url)sjob/%(short_name)s/nextbuildnumber/submit import read_config import sys import requests import json ##################### # Checking the configuration ##################### cfg = read_config.read() if cfg: j_url = cfg['jenkins_url'] user = cfg['user'] token = cfg['token'] else: print('Missing some mandatory parameters') sys.exit(1) def set_b_num(url, num): print(num) r = requests.post(url, auth=(user, token), data={'nextBuildNumber': num}) print(json.loads(r.text)['nextBuildNumber']) def learn_b_num(url): r = requests.get(url, auth=(user, token)) return json.loads(r.text)['nextBuildNumber']
import score_py3 import drawing #%% Input Arguments parser = argparse.ArgumentParser( description= 'Experiment10(VGG16): Train the model for diagnosing the heart disease by the ECG.' ) parser.add_argument( '-c', '--config', type=str, default='./Config/config.ini', metavar='str', help="the path of configure file (default: './Config/config.ini')") Args = parser.parse_args() # the Arguments Args = read_config.read(Args) # read configure file #%% Main Function if __name__ == '__main__': #%% ########## Read Data ########## print('read data') ECG_data, ECG_label = read_data.extract_data( read_data.read_data(Args)) # read data #%% ########## Data Processing ########## ECG_data = data_process.cut_out(ECG_data, Args.len) # cut out the ECG signals ECG_data = data_process.axis_change(ECG_data) # change the axis ECG_label = data_process.label_from_0(ECG_label) # label from 0 # split data train_x, test_x, train_y, test_y = data_process.train_test_split( ECG_data, ECG_label, trainratio=Args.trainratio, random_state=0) # change to Tensor
def __init__(self, *args, **kwargs): print('Loading GUI') super().__init__('ACI Application Deployment') config = read_config.read() #Definition of the forms fields self._txt_name = ControlText('Application Name (No Spaces)') self._auto_ip = ControlCheckBox('Automatically select IPs', default=True) self._txt_ip = ControlText('First Prod Subnet (for Seeded IP generation) (X.X.X.X/Y)') self._txt_ip.enabled = False self._subnet_size = ControlText('Subnet Size (CIDR)', default='28') self._author = ControlText('Change Implementer', default=config['DEFAULT VALUES']['Your_name']) self._requestor = ControlText('Change Requestor') self._change = ControlText('Change Number') self._reserve_in_ipam = ControlCheckBox('Reserve in IPAM', default=True) self._append = ControlCheckBox('Append to Existing Service (Overwrite Possible)', default=False) self._cc_env = ControlCombo('Environment') self._cc_env.add_item('(DEV) - DeployACI Lab', 'deployaci_lab') # Populate the environment list from actual tenants for tenant in getUsableTenants(): if tenant == 'deployaci_lab': continue self._cc_env.add_item(f'(PROD) - {tenant}', tenant) self._ck_prod_client = ControlCheckBox('prod_client', default=True) self._ck_prod_web = ControlCheckBox('prod_web', default=True) self._ck_prod_app = ControlCheckBox('prod_app', default=True) self._ck_prod_db = ControlCheckBox('prod_db', default=True) self._ck_uat_client = ControlCheckBox('uat_client', default=True) self._ck_uat_web = ControlCheckBox('uat_web', default=True) self._ck_uat_app = ControlCheckBox('uat_app', default=True) self._ck_uat_db = ControlCheckBox('uat_db', default=True) self._ck_dev_client = ControlCheckBox('dev_client', default=True) self._ck_dev_web = ControlCheckBox('dev_web', default=True) self._ck_dev_app = ControlCheckBox('dev_app', default=True) self._ck_dev_db = ControlCheckBox('dev_db', default=True) self._runbutton = ControlButton('Deploy') self._txt_ip.key_pressed_event = self._runReady self._txt_name.key_pressed_event = self._runReady self._subnet_size.key_pressed_event = self._runReady self._auto_ip.changed_event = self._auto_ip_press #Define the event that will be called when the run button is processed self._runbutton.value = self.__runEvent self._runbutton.enabled = False #self._cc_env.value = self.__envEvent #Define the organization of the Form Controls # self._formset = [ # ('_text'), # ('_ck_prod_client'), # ('_ck_prod_web'), # ('_ck_prod_app'), # ('_ck_prod_db'), # ('_ck_uat_client'), # ('_ck_uat_web'), # ('_ck_uat_app'), # ('_ck_uat_db'), # ('_ck_dev_client'), # ('_ck_dev_web'), # ('_ck_dev_app'), # ('_ck_dev_db'), # ('_runbutton'), # ] self._formset = [ ('_txt_name'), ('_auto_ip'), ('_txt_ip'), ('_subnet_size'), ('_author'), ('_requestor'), ('_change'), ('_reserve_in_ipam', '_append'), ('_cc_env'), ('_ck_prod_client', '_ck_uat_client', '_ck_dev_client'), ('_ck_prod_web', '_ck_uat_web', '_ck_dev_web'), ('_ck_prod_app', '_ck_uat_app', '_ck_dev_app'), ('_ck_prod_db', '_ck_uat_db', '_ck_dev_db'), ('_runbutton'), ]
from torch.optim import lr_scheduler from torch.utils.data import DataLoader from sklearn.metrics import precision_recall_fscore_support device = torch.device("cuda" if torch.cuda.is_available() else "cpu") parser = argparse.ArgumentParser() parser.add_argument('--config_file_path', type=str, default='conf_files/config') ## =============================== # Compile and configure all the model parameters. ## =============================== args = parser.parse_args() config = read_config.read(args.config_file_path) name = config['name'] total_epoch = config['total_epoch'] batch_size = config['batch_size'] class_number = config['class_number'] learning_rate = config['learning_rate'] extractor = config['extractor'] image_size = config['image_size'] target_list = config['target_list'].split(',') constant.resume_train = bool(config['resume']) constant.number_worker = config['number_workers'] constant.sampling = config['sampling'] constant.sampling_size = config['sampling_size'] seed = 42