def train_digits(PERCENT=1, EPOCHS=1): digits = read_data.read_file(fdata='digitdata/trainingimages', flabel='digitdata/traininglabels', WIDTH=28, HEIGHT=28, type='digits') num_data = len(digits[0]) #amount of training data neurons = [] hits = 0 for x in range(10): #create 10 neuron classes neurons.append(neuron(size=28 * 28)) for epochs in range(EPOCHS): digits = read_data.read_file(fdata='digitdata/trainingimages', flabel='digitdata/traininglabels', WIDTH=28, HEIGHT=28, type='digits') for k in range(int(num_data * PERCENT)): x = rand.randint(0, len(digits[0]) - 1) #get x as random features = get_features.features_from_image( digits[0][x]) #get vector of features scores = [] for y in neurons: #get score for each class scores.append(y.score(features)) winnerIndex = scores.index(max(scores)) if winnerIndex != digits[1][x]: neurons[winnerIndex].weights -= features neurons[digits[1][x]].weights += features digits[0].pop(x) digits[1].pop(x) return neurons
def train_faces(PERCENT=1, EPOCHS=1): faces = read_data.read_file(fdata='facedata/facedatatrain', flabel='facedata/facedatatrainlabels', WIDTH=60, HEIGHT=70, type='faces') num_data = len(faces[0]) #amount of training neurons = [] hits = 0 neurons.append(neuron(size=60 * 70)) for epochs in range(EPOCHS): faces = read_data.read_file(fdata='facedata/facedatatrain', flabel='facedata/facedatatrainlabels', WIDTH=60, HEIGHT=70, type='faces') for k in range(int(num_data * PERCENT)): x = rand.randint(0, len(faces[0]) - 1) #get x as random features = get_features.features_from_image( faces[0][x]) #get vector of features if neurons[0].score(features) < 0 and faces[1][x] == 1: neurons[0].weights += features elif neurons[0].score(features) >= 0 and faces[1][x] == 0: neurons[0].weights -= features faces[0].pop(x) faces[1].pop(x) return neurons
def main(): demo_data = True config = Config("6_demo.txt") lr = config.config["learning_rate"] no_epochs = config.config["no_epochs"] X_train, y_train = read_file(config.config["training"]) if demo_data: # Subtract 3 if the demo data is to be used y_train = np.array([y - 3 for y in y_train]) X_val, y_val = None, None if "validation" in config.config: # Read the validation data. X_val, y_val = read_file(config.config["validation"]) if demo_data: # Subtract 3 if the demo data is to be used y_val = np.array([y - 3 for y in y_val]) activation_functions = [] if "activations" in config.config: activation_functions = config.config["activations"] loss_type = config.config["loss_type"] l2_regularization_factor = config.config["L2_regularization"] layers = config.config["layers"] # Insert the number of features as the number of nodes in the first layer. layers.insert(0, X_train.shape[1]) if loss_type == "cross_entropy": # If cross_entropy is used then we need to use softmax for the last layer. n_classes = get_num_of_classes(y_train) activation_functions.append("softmax") # Append n_classes as the number of nodes in the last layer. layers.append(n_classes) y_train = one_hot(y_train, classes=n_classes) if y_val is not None: y_val = one_hot(y_val, classes=n_classes) else: # L2 activation_functions.append( "linear") # TODO: Typisk linear, kan være relu og. # Here we append 1 node at the last layer. layers.append(1) network = Network(X_train, y_train, layers, loss_type, activation_functions, lr, X_val=X_val, y_val=y_val, regularization_factor=l2_regularization_factor, no_epochs=no_epochs) assert len(layers) == len(activation_functions) + 1 network.train()
def extract_data(self, path): #根据指定路径读取出图片、标签和类别数 imgs, labels, counter = read_file(path) #将数据集打乱随机分组 X_train, X_test, y_train, y_test = train_test_split( imgs, labels, test_size=0.2, random_state=random.randint(0, 100)) #重新格式化和标准化 # 本案例是基于theano的,如果基于tensorflow的backend需要进行修改 #X_train = X_train.reshape(X_train.shape[0], 1, self.img_size, self.img_size)/255.0 #参数:shap[0]读取矩阵第一维的长度,变为一列 #X_test = X_test.reshape(X_test.shape[0], 1, self.img_size, self.img_size) / 255.0 #‘channels_last’模式下,输入形如(samples,rows,cols,channels)的4D张量 X_train = X_train.reshape(X_train.shape[0], self.img_size, self.img_size, 1) / 255.0 # 参数:shap[0]读取矩阵第一维的长度,变为一列 X_test = X_test.reshape(X_test.shape[0], self.img_size, self.img_size, 1) / 255.0 X_train = X_train.astype('float32') X_test = X_test.astype('float32') #将labels转成 binary class matrices Y_train = np_utils.to_categorical(y_train, num_classes=counter) Y_test = np_utils.to_categorical(y_test, num_classes=counter) #将格式化后的数据赋值给类的属性上 self.X_train = X_train self.X_test = X_test self.Y_train = Y_train self.Y_test = Y_test self.num_classes = counter
def train_faces(PERCENTAGE=1): faces = read_data.read_file(fdata='facedata/facedatatrain', flabel='facedata/facedatatrainlabels', WIDTH=60, HEIGHT=70, type='faces') num_data = len(faces[0]) #amount of training data features = get_features.advanced_features_from_image(faces[0][0]) face_class = label() face_class.features = np.zeros(len(features)) not_face_class = label() not_face_class.features = np.zeros(len(features)) ''' get frequency of feature values for each feature in training set ''' for k in range(int(num_data * PERCENTAGE)): # for each training data number x = rand.randint(0, len(faces[0]) - 1) #get x as random index features = get_features.advanced_features_from_image( faces[0][x]) #get vector of features if faces[1][x] == 0: not_face_class.frequency += 1 not_face_class.features += features elif faces[1][x] == 1: face_class.frequency += 1 face_class.features += features faces[0].pop(x) faces[1].pop(x) return face_class, not_face_class, num_data
def extract_data(self, path): #根据指定路径读取出图片、标签和类别数 imgs, labels, counter = read_file(path) #将数据集打乱随机分组 X_train, X_test, y_train, y_test = train_test_split( imgs, labels, test_size=0.2, random_state=random.randint(0, 100)) #重新格式化和标准化 X_train = X_train.reshape( X_train.shape[0], self.img_size, self.img_size, 1) / 255.0 #将x_train.shape[0](垂直尺寸)调整,变成128*128*1再除以255.0 X_test = X_test.reshape(X_test.shape[0], self.img_size, self.img_size, 1) / 255.0 X_train = X_train.astype('float32') X_test = X_test.astype('float32') #将labels转成 binary class matrices Y_train = np_utils.to_categorical(y_train, num_classes=counter) Y_test = np_utils.to_categorical(y_test, num_classes=counter) #将格式化后的数据赋值给类的属性上 self.X_train = X_train self.X_test = X_test self.Y_train = Y_train self.Y_test = Y_test self.num_classes = counter
def extract_data(self, path): # 根据指定路径读取出图片、标签和类别数 imgs, labels, counter = read_file(path) # 将数据集打乱随机分组 X_train, X_test, y_train, y_test = train_test_split(imgs, labels, test_size=0.2, random_state=random.randint(0, 100)) # 重新格式化和标准化 # 本案例是基于thano的,如果基于tensorflow的backend需要进行修改 X_train = X_train.reshape(X_train.shape[0], 1, self.imgX_size, self.imgY_size) / 255.0 X_test = X_test.reshape(X_test.shape[0], 1, self.imgX_size, self.imgY_size) / 255.0 X_train = X_train.astype('float32') X_test = X_test.astype('float32') # 将labels转成 binary class matrices Y_train = np_utils.to_categorical(y_train, num_classes=counter) Y_test = np_utils.to_categorical(y_test, num_classes=counter) # 将格式化后的数据赋值给类的属性上 self.X_train = X_train self.X_test = X_test self.Y_train = Y_train self.Y_test = Y_test self.num_classes = counter
def perceptron_deploy(digit=1, PERCENTAGE=1, digits=True): if digits: data = read_data.read_file(fdata='digitdata/testimages', flabel='digitdata/testlabels', WIDTH=28, HEIGHT=28, type='digits') else: data = read_data.read_file(fdata='facedata/facedatatest', flabel='facedata/facedatatestlabels', WIDTH=60, HEIGHT=70, type='faces') num_data = len(data[1]) #amount of training data neurons = [] if digits: neurons = perceptron.train_digits(PERCENT=PERCENTAGE, EPOCHS=1) else: neurons = perceptron.train_faces(PERCENT=PERCENTAGE, EPOCHS=1) print("Trained Model!") hits = 0 num = 0 if digits: while True: num = rand.randint(0, len(data[0]) - 1) if digit == data[1][num]: print("Found Digit to Guess!") break else: num = rand.randint(0, len(data[0]) - 1) features = get_features.features_from_image( data[0][num]) #get vector of features scores = [] for y in neurons: scores.append(y.score(features)) if digits: winnerIndex = scores.index(max(scores)) print("Predicted the digit: %s" % winnerIndex) else: if scores[0] < 0: print("Not Face!") else: print("Is Face!") plt.imshow(data[0][num]) plt.show()
def main(): lookback_window = 50 raw_time_sequences = [] cutoffs = [] for input_filename in sorted(glob('../output/*_VIEW_13.json'))[0:20]: d = read_file(input_filename) d.drop('Annual', axis=1, inplace=True) d_train = d.head(len(d) - HOW_MANY_YEARS_IN_TEST) cutoff_train_test_index = len(d_train.values.flatten()) time_sequence = d.values.flatten() time_sequence = time_sequence[~np.isnan(time_sequence)] time_sequence = np.log( time_sequence + 1e-6) # simple normalization. could be per station. raw_time_sequences.append(time_sequence) cutoffs.append(cutoff_train_test_index) mean = np.mean(np.concatenate(raw_time_sequences)) std = np.std(np.concatenate(raw_time_sequences)) scale = 10 x_train, y_train, x_test, y_test = [], [], [], [] for time_sequence, cutoff_train_test_index in zip(raw_time_sequences, cutoffs): # normalization time_sequence = (time_sequence - mean) / std / scale for i in range(lookback_window, len(time_sequence)): model_input_slice = time_sequence[i - lookback_window:i] if i < cutoff_train_test_index: x_train.append(model_input_slice) y_train.append(time_sequence[i]) else: x_test.append(model_input_slice) y_test.append(time_sequence[i]) x_train = np.expand_dims(x_train, axis=-1) y_train = np.expand_dims(y_train, axis=-1) x_test = np.expand_dims(x_test, axis=-1) y_test = np.expand_dims(y_test, axis=-1) print(x_train.shape, y_train.shape, x_test.shape, y_test.shape) m = Sequential() m.add(LSTM(128, input_shape=x_train.shape[1:])) m.add(Dense(128, activation='relu')) m.add(Dense(1, activation='linear')) opt = RMSprop(lr=1e-4) m.compile(loss='mae', optimizer=opt) for epoch in range(100): p = np.exp(m.predict(x_test) * scale * std + mean) t = np.exp(y_test * scale * std + mean) error = np.mean(np.abs(p - t)) print(epoch, error) m.fit(x_train, y_train, shuffle=True, validation_data=(x_test, y_test), epochs=1, batch_size=256, verbose=0)
def read_file_data(self, path): try: art, use_depth, coord_transform, polar_shift, name = read_file( path) self.read_art_params(art, use_depth, coord_transform, polar_shift, name) except: print("Failed to read file " + path)
def load_data(self): pwd = os.path.dirname(os.path.realpath(__file__)) self.gyroscope = np.mat(read_file(pwd+'/FilterTestData/Gyroscope.txt')) self.accelerometer = np.mat(read_file(pwd+'/FilterTestData/Accelerometer.txt')) self.magnetometer = np.mat(read_file(pwd+'/FilterTestData/Magnetometer.txt')) self.time = np.mat(read_file(pwd+'/FilterTestData/Time.txt')) self.quaternion_madgwick_imu = np.roll( np.mat( read_file(pwd+'/FilterTestData/quaternion_madgwick_imu.txt') ), -1) self.quaternion_madgwick_marg = np.roll( np.mat( read_file(pwd+'/FilterTestData/quaternion_madgwick_marg.txt') ), -1 ) self.quaternion_mahoney_imu = np.roll( np.mat( read_file(pwd+'/FilterTestData/quaternion_mahoney_imu.txt') ), -1 ) self.quaternion_mahoney_marg = np.roll( np.mat( read_file(pwd+'/FilterTestData/quaternion_mahoney_marg.txt') ), -1 )
def deploy_model(PERCENT, EPOCHS, digits=True): #set digits to false to train faces if digits: data = read_data.read_file(fdata='digitdata/testimages', flabel='digitdata/testlabels', WIDTH=28, HEIGHT=28, type='digits') else: data = read_data.read_file(fdata='facedata/facedatatest', flabel='facedata/facedatatestlabels', WIDTH=60, HEIGHT=70, type='faces') num_data = len(data[1]) #amount of training data neurons = [] if digits: neurons = train_digits(PERCENT=PERCENT, EPOCHS=EPOCHS) else: neurons = train_faces(PERCENT=PERCENT, EPOCHS=EPOCHS) hits = 0 for x in range(num_data): features = get_features.features_from_image( data[0][x]) #get vector of features scores = [] for y in neurons: scores.append(y.score(features)) if digits: winnerIndex = scores.index(max(scores)) if winnerIndex == data[1][x]: hits += 1 else: if scores[0] < 0 and data[1][x] == 0: hits += 1 elif scores[0] >= 0 and data[1][x] == 1: hits += 1 return hits / num_data
def test_onBatch(path): model = Model() model.load() index = 0 img_list, label_lsit, counter = read_file(path) for img in img_list: picType, prob = model.predict(img) if picType != -1: index += 1 print(labbel[picType], prob) else: print("invaild person") return index
def test_onBatch(path): model = Model() model.load() index = 0 img_list, label_lsit, counter = read_file(path) for img in img_list: picType, prob = model.predict(img) if picType != -1: index += 1 name_list = read_name_list('./image/trainfaces') print(name_list[picType]) else: print(" Don't know this person") return index
def test_onBatch(path): model= Model() model.load() index = 0 img_list, label_lsit, counter = read_file(path) for img in img_list: picType,prob = model.predict(img) if picType != -1: index += 1 name_list = read_name_list('/Users/gaoxingyun/Documents/uw/courses/Sp19/EE576_CV/project/faceRecognition/dataset') print (name_list[picType]) else: print (" Don't know this person") return index
def test_onBatch(path): model = Model() model.load() index = 0 img_list, label_lsit, counter = read_file(path) for img in img_list: picType, prob = model.predict(img) if picType != -1: index += 1 name_list = read_name_list('D:\myProject\pictures\dataset') print name_list[picType] else: print " Don't know this person" return index
def infrence_model(PERCENTAGE=1): SMOOTHER = 1 label_obj, num_data = train_digits(PERCENTAGE=PERCENTAGE) digits = read_data.read_file(fdata='digitdata/testimages', flabel='digitdata/testlabels', WIDTH=28, HEIGHT=28, type='digits') predictions = [] #outputs from bayes classifier for x in range(len(digits[0])): features = get_features.features_from_image( digits[0][x]) #get array of features maxls = [] cur_guess = None for y in range( 10): #get prob of each label and choose highest as answer p_y = math.log( (label_obj[y].frequency) / int(num_data * PERCENTAGE)) likelihood = 0 for feats in range(len(features)): if features[feats] == 0: likelihood += math.log( (label_obj[y].v0[feats] + SMOOTHER) / (label_obj[y].frequency + label_obj[y].v0[feats]) * SMOOTHER) elif features[feats] == 1: likelihood += math.log( (label_obj[y].v1[feats] + SMOOTHER) / (label_obj[y].frequency + label_obj[y].v1[feats]) * SMOOTHER) elif features[feats] == 2: likelihood += math.log( (label_obj[y].v2[feats] + SMOOTHER) / (label_obj[y].frequency + label_obj[y].v2[feats]) * SMOOTHER) likelihood = likelihood + p_y maxls.append(likelihood) predictions.append(maxls.index(max(maxls))) hits = 0 for x in range(len(digits[1])): if predictions[x] == digits[1][x]: hits += 1 accuracy = hits / len(digits[1]) return accuracy
def test_onBatch(path): model = Model() model.load() index = 0 img_list, label_lsit, counter = read_file(path) for img in img_list: picType, prob = model.predict(img) if picType != -1: index += 1 # name_list = read_name_list('D:\myProject\pictures\dataset') name_list = read_name_list( r'D:/my_laboratory/face_detection20180516/dataset') print(name_list[picType]) else: print(" Don't know this person") return index
def test_onBatch(path): model = Model() model.load() index = 0 img_list, label_lsit, counter = read_file(path) for img in img_list: picType, prob = model.predict(img) if picType != -1: index += 1 name_list = read_name_list( 'C:\\Users\\jimmychen\\Desktop\\chernger\\chernger_faceRecognition\\dataset' ) print(name_list[picType]) else: print("Don't know this person") return index
def bayes_digit(digit=1, PERCENTAGE=1): SMOOTHER = 1 label_obj, num_data = naive_bayes_digits.train_digits(PERCENTAGE=1) print("Trained Model!") digits = read_data.read_file(fdata='digitdata/testimages', flabel='digitdata/testlabels', WIDTH=28, HEIGHT=28, type='digits') num = 0 while True: num = rand.randint(0, len(digits[0]) - 1) if digit == digits[1][num]: break print("Found Digit to Guess!") features = get_features.features_from_image( digits[0][num]) #get array of features maxls = [] for y in range(10): #get prob of each label and choose highest as answer p_y = math.log((label_obj[y].frequency) / int(num_data) * PERCENTAGE) likelihood = 0 for feats in range(len(features)): if features[feats] == 0: likelihood += math.log( (label_obj[y].v0[feats] + SMOOTHER) / (label_obj[y].frequency + label_obj[y].v0[feats]) * SMOOTHER) elif features[feats] == 1: likelihood += math.log( (label_obj[y].v1[feats] + SMOOTHER) / (label_obj[y].frequency + label_obj[y].v1[feats]) * SMOOTHER) elif features[feats] == 2: likelihood += math.log( (label_obj[y].v2[feats] + SMOOTHER) / (label_obj[y].frequency + label_obj[y].v2[feats]) * SMOOTHER) likelihood = likelihood + p_y maxls.append(likelihood) prediction = maxls.index(max(maxls)) print("Predicted the digit: %s" % prediction) plt.imshow(digits[0][num]) plt.show()
def data_handle(path): imgs, labels, counter = read_file(path) imgs -= MEAN_PIXEL X_train, X_test, y_train, y_test = train_test_split( imgs, labels, test_size=0.2, random_state=random.randint(0, 100)) X_train = X_train.reshape(X_train.shape[0], img_size, img_size, 3) / 255.0 X_test = X_test.reshape(X_test.shape[0], img_size, img_size, 3) / 255.0 X_train = X_train.astype('float32') X_test = X_test.astype('float32') # 多目标的label:one hot coding Y_train = np_utils.to_categorical(y_train) Y_test = np_utils.to_categorical(y_test) num_classes = counter print('handle successful,', X_train.shape[0]) return X_train, X_test, Y_train, Y_test, num_classes
def get_feature_objects(filename: str, max_items: int) -> (Dict[str, Features]): result_filename = filename + "results_stats.bin" if os.path.isfile(result_filename): with open(result_filename, "rb") as file: return pickle.load(file) else: c = ComputeFeatures() features = dict() for data in read_file(filename, max_items, True): if data.playerId not in features: features[data.playerId] = [] features[data.playerId].append(c.compute_features(data)) with open(result_filename, "wb") as file: pickle.dump(features, file) return features
def extract_data(self, path): #Read the number of pictures, tags, and categories based on the specified path imgs, labels, counter = read_file(path) print("Output tag") print(labels) #Dataset random grouping X_train, X_test, y_train, y_test = train_test_split( imgs, labels, test_size=0.4, random_state=random.randint(0, 100)) print("Output training mark and training set length") print(y_train) print(len(X_train)) print(X_train[1]) print("Test length and test set tag") print(len(X_test)) print(y_test) print("Output and") print(counter) #reformatting and standardization # This case is based on thano, if the backend based on tensorflow needs to be modified print(X_train.shape) X_train = X_train.reshape(X_train.shape[0], 480, 640, 1) X_test = X_test.reshape(X_test.shape[0], 480, 640, 1) X_train = X_train.astype('float32') / 255 X_test = X_test.astype('float32') / 255 print(X_train[1]) #labels into binary class matrices Y_train = np_utils.to_categorical(y_train, num_classes=counter) Y_test = np_utils.to_categorical(y_test, num_classes=counter) print(Y_train) # Assign the formatted data to the properties of the class self.X_train = X_train self.X_test = X_test self.Y_train = Y_train self.Y_test = Y_test self.num_classes = counter
def extract_data(self, path): imgs, labels, counter = read_file(path) X_train, X_test, y_train, y_test = train_test_split( imgs, labels, test_size=0.2, random_state=random.randint(0, 100)) X_train = X_train.reshape(X_train.shape[0], 1, self.img_size, self.img_size) / 255.0 X_test = X_test.reshape(X_test.shape[0], 1, self.img_size, self.img_size) / 255.0 X_train = X_train.astype('float32') X_test = X_test.astype('float32') Y_train = np_utils.to_categorical(y_train, num_classes=counter) Y_test = np_utils.to_categorical(y_test, num_classes=counter) self.X_train = X_train self.X_test = X_test self.Y_train = Y_train self.Y_test = Y_test self.num_classes = counter
def test_onBatch(path): model = Model() model.load() index = 0 img_list, label_list, counter = read_file(path) # img_list = img_list.reshape(img_list.shape[0], 174, 212, 1) # print(img_list.shape[0:]) # img_list = img_list.astype('float32')/255 # Label_list = np_utils.to_categorical(label_list, num_classes=counter) for img in img_list: picType, prob = model.predict(img) if picType != -1: index += 1 name_list = read_name_list('G:/desktop/myProject/pictures/test') print(name_list) print(name_list[picType]) else: print(" Don't know this person") return index
def extract_data(self, path): #根据指定路径读取出图片、标签和类别数 imgs, labels, counter = read_file(path) print("输出标记") print(labels) #将数据集打乱随机分组 X_train, X_test, y_train, y_test = train_test_split( imgs, labels, test_size=0.4, random_state=random.randint(0, 100)) print("输出训练标记和训练集长度") print(y_train) print(len(X_train)) print(X_train[1]) print("测试长度和测试集标记") print(len(X_test)) print(y_test) print("输出和") print(counter) #重新格式化和标准化 # 本案例是基于thano的,如果基于tensorflow的backend需要进行修改 X_train = X_train.reshape(X_train.shape[0], 174, 212, 1) X_test = X_test.reshape(X_test.shape[0], 174, 212, 1) X_train = X_train.astype('float32') / 255 X_test = X_test.astype('float32') / 255 print(X_train[1]) #将labels转成 binary class matrices Y_train = np_utils.to_categorical(y_train, num_classes=counter) Y_test = np_utils.to_categorical(y_test, num_classes=counter) print(Y_train) #将格式化后的数据赋值给类的属性上 self.X_train = X_train self.X_test = X_test self.Y_train = Y_train self.Y_test = Y_test self.num_classes = counter
def get_features(filename: str, max_items: int, label_present=True) -> (List[str], List[List]): result_filename = filename + "results.bin" if os.path.isfile(result_filename): with open(result_filename, "rb") as file: data = pickle.load(file) return data["labels"], data["features"] else: c = ComputeFeatures() features = [] labels = [] for data in read_file(filename, max_items, label_present): if label_present: labels.append(data.playerId) features.append(c.compute_features(data).to_array()) with open(result_filename, "wb") as file: pickle.dump({"labels": labels, "features": features}, file) return labels, features
def main(file_loc): global explode, pos, neg, emos, counter, handler, span, dates, words_total if ('.txt' not in file_loc): file_txt = file_loc[:-3] + 'txt' if not os.path.exists(file_txt): data_set = read_data_set(file_loc) file = open(file_txt, 'w') for month in data_set: file.write(month.to_string() + '\n') file.close() file_loc = file_txt (data_set, words_total) = read_file(file_loc) (counter, dates) = sum_data_set(data_set) set_emos(data_set) pos = counter.pop(0) neg = counter.pop(0) (plot, stacked) = make_flower() handler = FlowerEventHandler(plot) span = SpanSelector(stacked, onselect, 'horizontal', useblit=True, rectprops=dict(alpha=0.5, facecolor='red')) subplots_adjust(left=0.0, bottom=0.1, right=0.95, top=0.91, wspace=0.04, hspace=0.22) plt.show(block=True)
def main2(): global explode, pos, neg, emos, counter, handler, span, dates, words_total (data_set, words_total) = read_file('../data/article_compact.txt') (counter, dates) = sum_data_set(data_set) set_emos(data_set) pos = counter.pop(0) neg = counter.pop(0) (plot, stacked) = make_flower() handler = FlowerEventHandler(plot) span = SpanSelector(stacked, onselect, 'horizontal', useblit=True, rectprops=dict(alpha=0.5, facecolor='red')) subplots_adjust(left=0.0, bottom=0.1, right=0.95, top=0.91, wspace=0.04, hspace=0.22) plt.show(block=True)
def train_digits(PERCENTAGE=1): digits = read_data.read_file(fdata='digitdata/trainingimages', flabel='digitdata/traininglabels', WIDTH=28, HEIGHT=28, type='digits') num_data = len(digits[0]) #amount of training data label_obj = [] features = get_features.features_from_image(digits[0][0]) for x in range(10): #create 10 label objects for each class lbl = label() lbl.v0 = np.ones(len(features)) lbl.v1 = np.ones(len(features)) lbl.v2 = np.ones(len(features)) label_obj.append(lbl) ''' get frequency of feature values for each feature in training set ''' for k in range(int(num_data * PERCENTAGE)): # for each training data number x = rand.randint(0, len(digits[0]) - 1) #get x as random index features = get_features.features_from_image( digits[0][x]) #get vector of features label_obj[digits[1][x]].frequency += 1 for y in range(len(features)): if features[y] == 0: label_obj[digits[1][x]].v0[y] += 1 elif features[y] == 1: label_obj[digits[1][x]].v1[y] += 1 elif features[y] == 2: label_obj[digits[1][x]].v2[y] += 1 digits[0].pop(x) digits[1].pop(x) return label_obj, num_data
' to use when collecting training experiences.') args = parser.parse_args() continue_from_file = args.continue_from_file model_name = args.model_name simulator_type = args.simulator_type all_configs = load(open(config_filename, 'r'), Loader=yaml.FullLoader) config = all_configs[model_name] device = get_device() # Find the input size, hidden dim sizes, and output size env_name = config['env_name'] # env = gym.make(env_name) data = read_file('./data/train.csv') embeddings = Embeddings(read_embeddings('./data/embeddings.csv')) env = gym.make(env_name, data=data, embeddings=embeddings, alpha=0.5, gamma=0.9, fixed_length=True, trajectory_length=5) action_space = env.action_space observation_space = env.observation_space policy_hidden_dims = config['policy_hidden_dims'] vf_hidden_dims = config['vf_hidden_dims'] vf_args = (observation_space.shape[0] + 1, vf_hidden_dims, 1) # Initialize the policy
from read_data import read_file, get_ratexuser, get_movie_genres from similarity import recommend from user_personalization import print_question data, labels = read_file() # Get all the movie titles just one time movies, genres = get_movie_genres(data, labels) # separate the users by Id and then take just the ranking for each movie data_dicts, user_ids = get_ratexuser(data) print_question(data, labels, user_ids, data_dicts)
import read_data as rd import vectorization as vt import LSTM_Class as lstmcl import time as t import datetime import math import matplotlib.pyplot as plt tic = t.time() example = 'example_2015_12_2016_01' # read training data file_name = 'TrainData.txt' file_dir = 'txt_files\examples\\' + example + '\\' + file_name req_contents_tr = rd.read_file(file_dir) # read test data file_name = 'TestData.txt' file_dir = 'txt_files\examples\\' + example + '\\' + file_name req_contents_ts = rd.read_file(file_dir) # decode traing & test data req_data_tr = rd.decode_req_data(req_contents_tr) req_data_ts = rd.decode_req_data(req_contents_ts) # read input file file_name = "input.txt" file_dir = "txt_files\examples\\" + example + '\\' + file_name input_file_contents = rd.read_file(file_dir)