def __init__(self, usr_file): self.data = Data() self.file = usr_file self.person = '' self.msg_mail = self.data.read_template(self.person, self.file) self.adress_to = '' self.subject = '' self.ed_msg_mail = ''
class Watchdir: data = Data() patterns = "*" ignore_patterns = "" ignore_directories = False case_sensitive = True event_handler = PatternMatchingEventHandler(patterns, ignore_patterns, ignore_directories, case_sensitive) event_handler.on_created = on_created event_handler.on_deleted = on_deleted event_handler.on_modified = on_modified event_handler.on_moved = on_moved path = data.dir go_recursively = True observer = Observer() observer.schedule(event_handler, path, recursive=go_recursively) def run_watch(self): self.observer.start() try: while True: time.sleep(1) except KeyboardInterrupt: self.observer.stop() self.observer.join()
def send_mail(self, adress_to, subject, message, file): data = Data() filename = os.path.basename(file) msg_mail = MIMEMultipart() msg_mail["From"] = data.adress_from msg_mail["To"] = adress_to msg_mail["Subject"] = subject msg_mail.attach(MIMEText(message, 'plain')) with open(file, "rb") as attachment: part = MIMEBase("application", "octet-stream") part.set_payload(attachment.read()) encoders.encode_base64(part) part.add_header("Content-Disposition", f"attachment; filename= {filename}") msg_mail.attach(part) text = msg_mail.as_string() context = ssl.create_default_context() with smtplib.SMTP_SSL(data.host, data.port, context=context) as server: server.login(data.adress_from, data.password) server.sendmail(data.adress_from, adress_to, text)
def ask_usr(file): # ask user to send base_file = os.path.basename(file) data = Data() win = Window(base_file) mail = Send() win.popup() if win.ed_msg_mail and win.adress_to and win.subject: mail.send_mail(win.adress_to, win.subject, win.ed_msg_mail, file) destination = data.sent_dir + base_file os.rename(file, destination)
def main(): malopolska = Data('terc.csv').create_data() menu = Menu() while True: os.system('clear') print(menu.options()) option = input('\nChose the option:') if option == '1': menu.print_statistics() elif option == '2': menu.print_longest_names() elif option == '3': menu.print_largest_county() elif option == '4': menu.print_multicategory_names() elif option == '5': menu.advanced_search() elif option == '0': sys.exit()
def start(): print("Loading the files and preparing the system...") files_list = get_file_list( "technology_texts/python-3.8.4-docs-text/python-3.8.4-docs-text/c-api") # files_list = get_file_list("technology_texts/python-3.8.4-docs-text/python-3.8.4-docs-text/whatsnew") complete = Complete(Data(files_list)) # complete = Complete(Data(["technology_texts/python-3.8.4-docs-text/python-3.8.4-docs-text/about.txt"])) print("The system is ready.") input_ = ' '.join((''.join(i for i in input("\n\nEnter your text: ") if i in string.ascii_letters + ' ')).split()) while (1): text = " " while text[-1] != '#': match_sentences = complete.get_best_k_completions(input_) if len(match_sentences) != 0: for sentence in match_sentences: print( f"{sentence.completed_sentence} ({files_list[sentence.source_text]} {sentence.offset})" ) else: print("there is no items") # print(input_, end="") text = input(input_) input_ += ' '.join( (''.join(i for i in text if i in string.ascii_letters + ' ')).split()) input_ = ' '.join( (''.join(i for i in input("\n\nEnter your text: ") if i in string.ascii_letters + ' ')).split())
def main(): #myfuncs = ['constant', 'upstream_downstream', 'polynomial1', 'ackbar', 'eclipse', 'sine2'] myfuncs = [ 'constant', 'upstream_downstream', 'polynomial1', 'ackbar', 'eclipse', 'gp_sho' ] #myfuncs = ['constant', 'upstream_downstream', 'polynomial1', 'ackbar', 'gp_sho'] #myfuncs = ['constant', 'upstream_downstream', 'polynomial1', 'model_ramp', 'eclipse', 'gp_sho'] #significance above which to mask outliers #outlier_cut = 10. #parses command line input try: opts, args = \ getopt.getopt(sys.argv[1:], "hov", ["help", "show-plot", "run-mcmc", "plot-raw-data", "plot-sys", "path=", "fit-white=", "divide-white"] ) except getopt.GetoptError: usage() #defaults for command line flags verbose = False output = False show_plot = False run_mcmc = False run_lsq = True plot_raw_data = False path = "spec_lc" fit_white = False divide_white = False for o, a in opts: if o in ("-h", "--help"): usage() elif o == "-o": output = True elif o == "-v": verbose = True elif o == "--show-plot": show_plot = True elif o == "--run-mcmc": run_mcmc, run_lsq = True, False elif o == "--run-lsq": run_lsq = True elif o == "--plot-raw-data": plot_raw_data = True elif o == "--path": path = a elif o == "--fit-white": fit_white, white_file = True, a elif o == "--divide-white": divide_white = True else: assert False, "unhandled option" flags = { 'verbose': verbose, 'show-plot': show_plot, 'plot-raw-data': plot_raw_data, 'output': output, 'out-name': 'none.txt', 'run-lsq': run_lsq, 'run-mcmc': run_mcmc, 'divide-white': divide_white, 'fit-white': fit_white } #reads in observation and fit parameters obs_par = { x['parameter']: x['value'] for x in ascii.read("config/obs_par.txt", Reader=ascii.CommentedHeader) } fit_par = ascii.read("config/fit_par.txt", Reader=ascii.CommentedHeader) files = glob.glob(os.path.join(path, "*")) if fit_white: files = glob.glob(white_file) flags['out-name'] = "fit_" + pythontime.strftime("%Y_%m_%d_%H:%M") + ".txt" for f in files: data = Data(f, obs_par, fit_par) model = Model(data, myfuncs) data, model, params = lsq_fit(fit_par, data, flags, model, myfuncs) """data.err *= np.sqrt(model.chi2red) data, model, params = lsq_fit(fit_par, data, flags, model, myfuncs) if flags['verbose'] == True: print "rms, chi2red = ", model.rms, model.chi2red""" #FIXME : make this automatic! """outfile = open("white_systematics.txt", "w") for i in range(len(model.all_sys)): print>>outfile, model.all_sys[i] outfile.close()""" if flags['run-mcmc']: output = mcmc_fit(data, model, params, f, obs_par, fit_par)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2( labels=y, logits=logits )) acc = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1)), tf.float16)) # 优化 train_step = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss) from read_data import Data epoches = 100 batch_size = 32 max_train_batches = 33886 // batch_size test_batch_size = 32 max_test_batches = 2000 // test_batch_size data = Data('data.npz') with tf.Session() as sess: all_var = tf.global_variables() sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() # saver.restore(sess, 'model_saved/emotion') # print('读取模型成功') for i in range(epoches): start = time.time() # 训练loss total_loss = 0 for j in range(max_train_batches): x_this_batch, y_this_batch = data.get_random_train_batch(batch_size) train_step.run(feed_dict={
from utils.functions import lr_decay, batchify_sequence_labeling_with_label, predict_check, evaluate import torch import logging import sys import numpy as np import datetime logger = logging.getLogger(__name__) logger.setLevel(level=logging.INFO) handler = logging.FileHandler('log/%s_log.txt' % sys.argv[0].split('/')[-1].replace('.py', '')) logger.addHandler(handler) config = CnnLstmAttnCrfConfig() # 读取样本 data = Data() seed_num = 42 random.seed(seed_num) torch.manual_seed(seed_num) np.random.seed(seed_num) def train(): total_batch = 0 # model = CnnLstmCrf(config) model = CnnLstmAttnCrf(data) optimizer = optim.SGD(model.parameters(), lr=config.lr, momentum=config.momentum, weight_decay=config.l2)
class Window: def __init__(self, usr_file): self.data = Data() self.file = usr_file self.person = '' self.msg_mail = self.data.read_template(self.person, self.file) self.adress_to = '' self.subject = '' self.ed_msg_mail = '' def popup(self): # root root = Tk() root.title("Sending Message") root.resizable(False, False) def exit_gui(send): if send: self.adress_to = to.get() self.subject = subject.get() self.ed_msg_mail = mail.get(1.0, "end-1c") root.destroy() else: self.ed_msg_mail = False self.subject = False self.adress_to = False root.destroy() def enter_person(keystroke): self.person = to.get() msg.set(f"Sending email with {self.file} to {self.person}\n") root.update_idletasks self.msg_mail = self.data.read_template(self.person, self.file) mail.delete(1.0, END) mail.insert(INSERT, self.msg_mail) self.adress_to = self.data.read_adress_to(self.person) to.delete(0, END) to.insert(INSERT, self.adress_to) # heading msg = StringVar() msg.set(f"Sending email with {self.file} to _____\n") message = Label(root, textvariable=msg, font='none 13 bold') message.grid(row=0, column=0, columnspan=4, pady=10, padx=10) # from from_label = Label(root, text="From:") from_label.grid(row=1, column=0, columnspan=1) from_adress = Entry(root, width=40) from_adress.grid(row=1, column=1, columnspan=3, pady=10, padx=20) from_adress.insert(INSERT, self.data.adress_from) # to to_label = Label(root, text="To:") to_label.grid(row=2, column=0, columnspan=1) to = Entry(root, width=40) to.grid(row=2, column=1, columnspan=3, pady=10, padx=20) to.bind('<Return>', enter_person) # subject subject_label = Label(root, text="Subject:") subject_label.grid(row=3, column=0, columnspan=1) subject = Entry(root, width=40) subject.grid(row=3, column=1, columnspan=3, pady=10, padx=20) subject.insert(INSERT, self.file) # message mail = Text(root, height=20, width=40, pady=10, padx=10) mail.grid(row=4, column=0, columnspan=4, pady=10, padx=20) mail.insert(INSERT, self.msg_mail) mail.focus() mail.tag_add(SEL, "1.12", "1.24") mail.mark_set(INSERT, "1.12") mail.see(INSERT) # buttons empty1 = Label(root, text='') empty1.grid(row=5, column=0) button2 = Button(root, text="Cancel", command=lambda: exit_gui(False)) button2.grid(row=5, column=1, pady=10) button1 = Button(root, text="Send", font="none 10 bold", command=lambda: exit_gui(True)) button1.grid(row=5, column=2, pady=10) empty2 = Label(root, text='') empty2.grid(row=5, column=3) # root root.mainloop()
from __future__ import division from __future__ import print_function import tensorflow as tf import time from RHS import RHS from read_data import Data segment_per_sample = 1000 segment_length = 100 channel = 3 test_count = 30 model_dir = './model' data = Data(segment_per_sample, segment_length) rhs = RHS(layer=[data.class_num()]) def test(): data.init_test_data() x = tf.placeholder(tf.float32, shape=(test_count, None, channel)) lstm_code = rhs.rnn(x) regression = rhs.regression(lstm_code) classification = tf.reduce_mean(tf.nn.softmax(regression), 0) index = tf.argmax(classification, dimension=0) sample_code = tf.reduce_mean(lstm_code, 0) sess = tf.Session() with sess.as_default():
import logging import sys import numpy as np from model.seqlabel import SeqLabel logging.basicConfig(filemode='w') logger = logging.getLogger(__name__) logger.setLevel(level=logging.INFO) handler = logging.FileHandler('log/%s_log.txt' % sys.argv[0].split('/')[-1].replace('.py','')) logger.addHandler(handler) config = CnnLstmConfig() map_location = 'cpu' if config.device.type == 'cpu' else None gpu = False if config.device.type == 'cpu' else True # 读取样本 data = Data() data.gpu = gpu data.char_alphabet_size = len(data.char_alphabet) + 1 data.word_alphabet_size = len(data.word_alphabet) + 1 data.label_alphabet_size = len(data.label_alphabet) + 1 data.feat_alphabet_size = len(data.feat_alphabet) + 1 data.dropout = 0.5 data.word_emb_dim = 300 data.char_emb_dim = 300 data.feature_num = 1 data.hidden_dim = 200 data.char_hidden_dim = 50 data.feature_emb_dim = 5 data.pretrain_char_embedding = None
def main(): data = Data(settings.CONFIG['IMPORT_URL']) data.read()
#Analysis configurations analysis_thresholds = [1,5,10] #Definition of parameters separator = "#" season_sep = "TEMP_INI\n" in_period = 1990 fi_period = 2015 seasons_evaluated = list(range(in_period,fi_period+1,1)) #Data paths ref_path = os.getcwd()+r"\..\data\hist_"+str(in_period)+"_"+str(fi_period)+".txt" images_path = os.getcwd()+r"\..\results\images\\" pajek_path = os.getcwd()+r"\..\results\networks\\" data = Data(separator=separator,ini=in_period,fin=fi_period,path=ref_path) conf_name = "_conf_" if deploy_know_how_relations: conf_name += "KH_" if deploy_rivality_relations: conf_name += "RIV_" #Loading Data data_content = data.read_dataset(season_sep=season_sep) data_model = History() data_model.build(seasons_content=data_content,seasons_ids=seasons_evaluated) #Building the model temporal_network = {} temporal_network_kh = {}
import tensorflow as tf import time import random from RHS import RHS from read_data import Data segment_per_sample = 1000 segment_length = 100 channel = 3 test_count = 30 test_period = 30 log_dir = './log' model_dir = './model' data = Data(segment_per_sample, segment_length) rhs = RHS(lstm_size=800, class_num=data.class_num()) def test(): data.init_test_data() x = tf.placeholder(tf.float32, shape=(test_count, None, channel)) lstm_code = tf.reduce_sum(rhs.lstm(x, test_count), 0) sess = tf.Session() with sess.as_default(): sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() checkpoint = tf.train.get_checkpoint_state(model_dir)
type=bool, default=False, help='Visualize data distribution') parser.add_argument('--num_epochs', type=int, default=5, help='Number of epochs to train on') parser.add_argument('--train', default=True, type=bool, help='train the model') opt = parser.parse_args() if opt.use_cuda: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # ''' df = Data() train_df = df.train_df valid_df = df.valid_df train_labels_data = df.train_labels_data valid_labels_data = df.valid_labels_data if opt.samples: see_samples(train_df) # plt.show() train_df['Label'] = train_df.apply(lambda x: 1 if 'positive' in x.FilePath else 0, axis=1) train_df['BodyPart'] = train_df.apply(lambda x: x.FilePath.split('/')[2][3:], axis=1)