tos_data, map_type='regress') reg_coeff_IOD, pvals_IOD = regress_map.regress_map(IOD, tos_data, map_type='regress') reg_coeff_IOBM, pvals_IOBM = regress_map.regress_map( IOBM, tos_data, map_type='regress') reg_coeff_IOBM2, pvals_IOBM2 = regress_map.regress_map( IOBM2, tos_data, map_type='regress') reg_coeff_NINO34, pvals_NINO34 = regress_map.regress_map( NINO34, tos_data, map_type='regress') # save new_file_name = saving_dir + '/SST_indices_' + model_name + '_' + id + '.nc' description = 'Various indices of SSTs including the PDO index calculated as the first principal component time series of monthly 20N-70N SST with seasonal cycle removed, Interdecadal Pacific Oscillation, Indian Ocean Basin Mode, Indian Ocean Dipole and Nino 3.4 index. ' save = save_file(new_file_name, description) # add dimension variables save.add_dimension(lats, 'lats') save.add_dimension(lons, 'lons') save.add_times(times, calendar, t_units, time_name='times') # add variables save.add_variable(PDO, 'PDO', ('times', )) save.add_variable(reg_coeff_PDO, 'reg_coeff_PDO', ( 'lats', 'lons', )) save.add_variable(pvals_PDO, 'pvals_PDO', ( 'lats', 'lons', )) save.add_variable(IOD, 'IOD', ('times', ))
calendar_SST, t_units_SST, N, season=season) NINO34_object = prep_index_regress_save('NINO34', nc_SST, times_SST, calendar_SST, t_units_SST, N, season=season) # save file object f = saving_dir + '/SST_index_circulation_regression_' + model_name + '_' + season + '.nc' description = '' + model_name save = save_file(f, description) # add dimensions save.add_dimension(lats_psl, 'lats') save.add_dimension(lons_psl, 'lons') save.add_times(years[halfN:][::-1][halfN - 1:][::-1], calendar_psl, t_units_psl, time_name='running_mean_years') # regression on SST indices and save PDO_object.regress_variable(psl_rm, save, 'regress_coeff_PDO_psl', 'pval_PDO_psl') IOD_object.regress_variable(psl_rm, save, 'regress_coeff_IOD_psl', 'pval_IOD_psl') IPO_object.regress_variable(psl_rm, save, 'regress_coeff_IPO_psl',