ax = fig.add_subplot(jj) ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax) ax.set_xlabel(xtit, fontsize=fs) ax.set_ylabel(ytit, fontsize=fs) ax.tick_params(labelsize=13) start, end = ax.get_xlim() ax.xaxis.set_ticks(np.arange(start, end, 1.)) ax.xaxis.set_ticks(np.arange(start, end, 0.2), minor=True) ax.xaxis.set_major_formatter(ticker.FormatStrFormatter('%0.1f')) ax.text(40.1, -1.3, zleg[iz]) # Plot the observations O2_3728-VVDSWIDEI21.5-z1.234.txt ox, oy, el, eh = jc.read_jc_indlf(obs_dir, zz, h0=obsh0, line='O2_3728', survey=obsnom, band=obands) if hasattr(ox, "__len__"): ax.errorbar(ox, oy, yerr=[el, eh], fmt='o', ecolor='grey', color='grey', mec='grey') # Plot the model predictions for index in range(len(inleg1)): py1 = 0. py1 = lf_ext[index, :]
oyr = oy[ind] arrinds = oxr.argsort() oxr = oxr[arrinds] oyr = oyr[arrinds] #if(isinstance(ox, (np.ndarray))): # if (iz == 0): # ax1.errorbar(ox,oy,yerr=[el,eh],fmt='o',\ # ecolor='grey',color='grey',mec='grey') # else: # ax.errorbar(ox,oy,yerr=[el,eh],fmt='o',\ # ecolor='grey',color='grey',mec='grey') # Plot the observations O2_3728-*-z*.txt for i, isurvey in enumerate(obsnom): ox, oy, el, eh = jc.read_jc_indlf( obs_dir+'lf_may16_comparat/individual_LF/',\ zz,h0=obsh0, line='O2_3728',\ survey=isurvey,band=obands[i]) if (isinstance(ox, (np.ndarray))): col = cols[i + 1] if (iz == 0): ax1.errorbar(ox,oy,yerr=[el,eh],fmt='o',\ ecolor=col,color=col,mec=col) else: ax.errorbar(ox,oy,yerr=[el,eh],fmt='o',\ ecolor=col,color=col,mec=col) ## Plot Prabhakar Tiwari's LF #if (zsnap == 41): # oxh, oyh, oeh = np.loadtxt(obs_dir+'tiwari/OII_3728_LF_v11.dat', # usecols=(0,1,2),unpack=True,skiprows=1) #
oyr = oy[ind] arrinds = oxr.argsort() oxr = oxr[arrinds] oyr = oyr[arrinds] if (isinstance(ox, (np.ndarray))): if (iz == 0): ax1.errorbar(ox,oy,yerr=[el,eh],fmt='o',\ ecolor='grey',color='grey',mec='grey') else: ax.errorbar(ox,oy,yerr=[el,eh],fmt='o',\ ecolor='grey',color='grey',mec='grey') # Plot the observations O2_3728-*-z*.txt for i, isurvey in enumerate(obsnom): ox, oy, el, eh = jc.read_jc_indlf(obs_dir+'individual_LF/',\ zz,h0=obsh0,\ line='O2_3728',\ survey=isurvey,band=obands[i]) if (isinstance(ox, (np.ndarray))): col = cols[i + 1] if (iz == 0): ax1.errorbar(ox,oy,yerr=[el,eh],fmt='o',\ ecolor=col,color=col,mec=col) else: ax.errorbar(ox,oy,yerr=[el,eh],fmt='o',\ ecolor=col,color=col,mec=col) # Plot the model predictions for index in range(ntypes): # Attenuated py = 0. py = lf_ext[index, :]