Esempio n. 1
0
def main():

    # Loading any data in the
    # phase space from the appropriate folder
    fname = "out_fil.h5"
    base = "/work/jiff26/jiff2611/PROJECTS/effective/Jobs/170731-Active_Diffusion/rotation_data/aspect_ratio_10.0/"
    density = [0.4]
    pa = [1.0]
    pp = [0.0]

    folders = []
    for di in density:
        for pai in pa:
            for ppi in pp:
                folders.append(base + 'density_' + str(di) + '/pa_' +
                               str(pai) + '/pp_' + str(ppi) + '/')

    # all functions here, iterate parameter set by set
    for folder in folders:
        fils, sim = read_data(folder, fname)

        traj(fils)

    plt.show()
    return
Esempio n. 2
0
def main():
    # Loading any data in the
    # phase space from the appropriate folder
    fname = "out_fil.h5"
    base = "/work/jiff26/jiff2611/PROJECTS/effective/Jobs/170731-Active_Diffusion/rotation_data/aspect_ratio_10.0/"
    density = [0.4]
    pa = [0.4, 0.6, 0.8, 1.0]
    pp = [0.0]

    folders = []

    for di in density:
        for pai in pa:
            for ppi in pp:
                folders.append(base + 'density_' + str(di) + '/pa_' +
                               str(pai) + '/pp_' + str(ppi) + '/')

    # all functions here, iterate parameter set by set
    for pai, folder in zip(pa, folders):
        fils, sim = read_data(folder, fname)

        for i, t in enumerate([0.3]):
            #traj_distance(fils,t=t)
            #traj_time(fils,t=t)

            sigma = 50
            #traj(fils)
            traj_time_vel_corr(fils, t=0.3, sigma=50, pai=pai)
            traj_distance_vel_corr(fils, t=0.3, sigma=50)
            #traj(fils,t=t,sigma=sigma)
            #traj_distance(fils,t=t, sigma=sigma)
            #traj_time(fils,t=t, sigma=sigma)
    plt.show()
    return
Esempio n. 3
0
def main():

    # Loading any data in the 
    # phase space from the appropriate folder
    fname="out_fil.h5"
    base ="/work/jiff26/jiff2611/PROJECTS/effective/Jobs/170731-Active_Diffusion/rotation_data/aspect_ratio_10.0/"
    density=[0.4];	pa=[1.0];	pp=[0.0];
 
    folders=[] 
    for di in density:
        for pai in pa:
            for ppi in pp:
                folders.append(base+'density_'+str(di)+'/pa_'+str(pai)+'/pp_'+str(ppi)+'/')

    # all functions here, iterate parameter set by set
    for folder in folders:
        fils, sim = read_data(folder, fname)
        
        data = fils.xi.transpose(2,1,0) 		# Adopt Guglielmo's convention here to avoid confusion
        pkl.dump(data, open('com.pkl','wb'))

        data = fils.ori.transpose(2,1,0) 		# Adopt Guglielmo's convention here to avoid confusion
        pkl.dump(data, open('ori.pkl','wb'))

    return
Esempio n. 4
0
def disp(fname):
    base = "/work/jiff26/jiff2611/PROJECTS/effective/Jobs/170731-Active_Diffusion/rotation_data/aspect_ratio_10.0/"
    density = [0.4]
    pa = [1.0]
    pp = [0.0]

    folders = []
    for di in density:
        for pai in pa:
            for ppi in pp:
                folders.append(base + 'density_' + str(di) + '/pa_' +
                               str(pai) + '/pp_' + str(ppi) + '/')

    for folder in folders:

        cells, sim = read_data(folder, fname)
        rodids = [0, 10]

        f, (ax1, ax2) = plt.subplots(1, 2)

        for rodid in rodids:
            traj = cells.xi[5000:, :, rodid]

            print(traj.shape)

            disp = traj - traj[0]

            disp2 = np.sqrt(np.square(disp[:, 0]) + np.square(disp[:, 1]))

            ax1.plot(disp2)
            ax2.plot(traj[:, 0], traj[:, 1])
            ax2.set_aspect('equal')
Esempio n. 5
0
def main():

    ### get the data folder

    parser = argparse.argumentparser()
    parser.add_argument("-sdfl", "--simdatafolder", \
                        help="folder containing the simulation data")
    parser.add_argument("-dfl", "--datafolder", \
                        help="folder containing analysis data")
    parser.add_argument("-sfl", "--savefolder", \
                        help="folder to save the resulting analysis data inside")
    parser.add_argument("-figfl", "--figfolder", \
                        help="folder to save the figures inside")
    parser.add_argument("-ti", "--inittime", nargs="?", const=10, \
                        type=int, help="initial time step")
    parser.add_argument("-tf", "--fintime", nargs="?", const=100, \
                        type=int, help="final timestep")
    parser.add_argument("-s","--savepdf", action="store_true", \
                        help="decide whether to save in pdf or not")
    args = parser.parse_args()

    ### read the data and general information from the folder

    beads, sim = read_write.read_data(args.simdatafolder)
    beads.calc_img_pos(sim.lx)

    rcut = 15.  # size of the interrogation circle
    dcut = 0.1  # defect strength cut
    dcrit = 9.  # clustering distance threshold criteria
    ncrit = 15  # clustering size threshold criteria

    for step in range(args.inittime, args.fintime):

        print 'step / last_step: ', step, args.fintime

        ### load the possible defect points

        sfilepath = args.datafolder + 'possible_defect_pts_cpp_' + str(
            step) + '.h5'
        possible_defect_pts = read_write.load_h5_data(sfilepath)

        ### cluster the possible defect points and plot the cluster

        xcm, ycm = cluster_analysis(possible_defect_pts, dcrit, ncrit, sim, step, \
            beads.xi[step, 0, :], beads.xi[step, 1, :], beads.cid)

        ### for each of the defect points found by clustering
        # calculate the defect strength and plot each point

        defect_pts = find_defects.recompute_defects(\
            xcm, ycm, beads, sim, rcut, dcut, step, args.figfolder)

        ### save the ultimate defect points

        sfilepath = args.savefolder + 'defect_pts_' + str(step) + '.txt'
        read_write.save_data(defect_pts, sfilepath)

    return
Esempio n. 6
0
def disp(fname):
    base = "/work/jiff26/jiff2611/PROJECTS/effective/Jobs/170731-Active_Diffusion/rotation_data/aspect_ratio_10.0/"
    density = [0.4]
    pa = [1.0]
    pp = [0.0]

    folders = []
    for di in density:
        for pai in pa:
            for ppi in pp:
                folders.append(base + 'density_' + str(di) + '/pa_' +
                               str(pai) + '/pp_' + str(ppi) + '/')

    for folder in folders:

        rodids = [0]

        f, (ax1, ax2, ax3) = plt.subplots(3, 1)

        for rodid in rodids:
            cells, sim = read_data(folder, fname)
            traj = cells.xi[5000:, :, rodid]

            print(traj.shape)

            disp = traj - traj[0]

            disp2 = np.sqrt(np.square(disp[:, 0]) + np.square(disp[:, 1]))

            ax3.plot(traj[:1000, 0], traj[:1000, 1], c='b')
            ax3.plot(traj[1000:2000, 0], traj[1000:2000, 1], c='y')
            ax3.plot(traj[2000:3000, 0], traj[2000:3000, 1], c='g')
            ax3.plot(traj[3000:4000, 0], traj[3000:4000, 1], c='r')
            ax3.plot(traj[4000:5000, 0], traj[4000:5000, 1], c='k')

            ax3.set_aspect('equal')

        lag = 100
        thresh = 10

        slope = disp2[:-lag] - disp2[lag:]
        ax1.plot(np.abs(slope))

        #ax2.plot(np.abs(slope))
        ax2.plot(np.abs(slope) > thresh)

        plotter = slope

        plotter[np.abs(slope) > thresh] = 1
        plotter[np.abs(slope) < thresh] = 0
Esempio n. 7
0
def gug(fname):
    base = "/work/jiff26/jiff2611/PROJECTS/effective/Jobs/170731-Active_Diffusion/rotation_data/aspect_ratio_10.0/"
    density = [0.4]
    pa = [1.0]
    pp = [0.0]

    folders = []
    for di in density:
        for pai in pa:
            for ppi in pp:
                folders.append(base + 'density_' + str(di) + '/pa_' +
                               str(pai) + '/pp_' + str(ppi) + '/')

    for folder in folders:
        cells, sim = read_data(folder, fname)
        traj = cells.xi[:, :, :50]
        fp = open('./gug.pkl', 'wb')
        pkl.dump(traj, fp)

        fp.close()
Esempio n. 8
0
def vacf(fname):
    base = "/work/jiff26/jiff2611/PROJECTS/effective/Jobs/170731-Active_Diffusion/rotation_data/aspect_ratio_10.0/"
    density = [0.4]
    pa = [1.0]
    pp = [0.0]

    folders = []
    for di in density:
        for pai in pa:
            for ppi in pp:
                folders.append(base + 'density_' + str(di) + '/pa_' +
                               str(pai) + '/pp_' + str(ppi) + '/')

    lag = 1

    plotter0 = np.zeros((50, 2))
    plotter1 = np.zeros((50, 2))

    for fi, folder in enumerate(folders):
        cells, sim = read_data(folder, fname)

        lags_v = [int(l) for l in np.logspace(0, np.log10(len(cells.xi)), 100)]

        plotter = np.zeros((len(lags_v), 2))

        traj = cells.xi[:, :, :]
        v = traj[:-lag] - traj[lag:]

        for i, lagv in enumerate(lags_v):
            v_corr = np.sum(v[:-lagv] * v[lagv:], axis=1)

            plotter[i, 0] = lagv

            if len(v_corr) > 0:
                plotter[i, 1] = v_corr.mean()
            else:
                plotter[i, 1] = 0

        x, y = lags_v, plotter[:, 1]

        plt.loglog(x, y)
Esempio n. 9
0
def levy(fname):
    base = "/work/jiff26/jiff2611/PROJECTS/effective/Jobs/170731-Active_Diffusion/rotation_data/aspect_ratio_10.0/"
    density = [0.4]
    pa = [0.2, 1.0]
    pp = [0.0]

    powerlaw = lambda x, amp, index: amp * (x**index)

    folders = []
    for di in density:
        for pai in pa:
            for ppi in pp:
                folders.append(base + 'density_' + str(di) + '/pa_' +
                               str(pai) + '/pp_' + str(ppi) + '/')

    for folder in folders:

        rodids = [153]
        #lags = (10, 100, 500)
        lags = (100, )
        long_time = 10
        for lag in lags:
            for rodid in rodids:
                cells, sim = read_data(folder, fname)
                traj = cells.xi[5000:, :, :]

                dr = traj[:-lag] - traj[lag:]

                disps = np.sqrt(np.square(dr[:, 0]) + np.square(dr[:, 1]))

            hist, be = np.histogram(disps / 10, bins=100, normed=True)
            bw = be[1] - be[0]
            bc = be[1:] - bw / 2

            popt, pcov = curve_fit(powerlaw, bc[long_time:], hist[long_time:])

            plt.loglog(bc, hist)
            plt.loglog(bc[long_time:], powerlaw(bc[long_time:], *popt), c='k')
            print(*popt)
Esempio n. 10
0
            if sent[hyphen_index - 1] != " ":
                answer += " "
            answer += sent[hyphen_index] + " "
        else:
            answer += sent[hyphen_index]
        start = hyphen_index + 1
    answer += sent[start:]
    return answer


if __name__ == "__main__":
    model = build_model(
        configs.morpho_tagger.UD2_0.morpho_ru_syntagrus_pymorphy_lemmatize,
        download=True)
    ud_model = udModel.load(ud_model_path)
    sents, answers = read_data(train_path)
    symbols = sorted(set(a for sent in sents for a in sent))
    # with open("dump/symbols.out", "w", encoding="utf8") as fout:
    # fout.write("\n".join(symbols))
    # sys.exit()
    sents = [sanitize(sent) for sent in sents]
    # print("Tagging...")
    # tokenized_data = tokenizer.process("\n\n".join(sents))
    # data = parse_ud_output(tokenized_data)
    # source = [[elem[1] for elem in sent] for sent in data]
    # tagged_data = call_model(model, sents, batch_size=64)
    if tokenize:
        tokenized_data, for_tagging = "", []
        tokenizer = Pipeline(ud_model, "tokenize", Pipeline.NONE,
                             Pipeline.NONE, "conllu")
        for start in range(0, len(sents), 40):
Esempio n. 11
0
def prepare_data(train_file, parse_file, max_sents=-1, **kwargs):
    (source, answers) = read_data(train_file, max_sents=max_sents)
    sents = read_parse_file(parse_file, max_sents=max_sents, parse=False)
    return _prepare_data(source, sents, answers, **kwargs)