Esempio n. 1
0
def check_and_load():
    global theme, path, idx, sng_name, ismini

    dir_path = create()

    if not os.path.exists(dir_path + '/settings.toml'):
        write()

    theme, path, idx, sng_name, ismini = read()
Esempio n. 2
0
def restore_settings():
    global idx

    if ismini:
        path_type = is_dir_file(path)
        load_songs(path, path_type)
        try:
            idx = name_to_idx(sng_name)
        except:
            write()
            return

        song_list.selection_clear(0, 'end')
        song_list.selection_set(idx)
        song_list.activate(idx)
        song_list.see(idx)
        play(idx, init_player, True)

        show_mini()

    if theme == 'dark':
        change_theme(init_player, file_menu)
Esempio n. 3
0
def main_rendu(accuracy_on_train_set=False):
    ls_kernel = [
        kernels.MismatchKernel(12, 2, 4, False),
        kernels.MismatchKernel(12, 2, 4, True),
        kernels.MismatchKernel(9, 2, 4, False)
    ]

    ls_reg_val = [100 * 0.03162277660168379, .1, 1000 * 0.03162277660168379]
    ls_methods = [
        methods.KernelRidgeRegression(ls_kernel[i], reg_val=ls_reg_val[i])
        for i in range(3)
    ]
    for i in range(3):
        print("##################", f"i={i}")
        # X = read_write.read_X100(f"data/Xtr{i}_mat100.csv")
        X = read_write.read(f"data/Xtr{i}.csv")
        # print(X.shape)
        # X_cat = np.concatenate((X, X), axis=-1)

        # X_test = read_write.read_X100(f"data/Xte{i}_mat100.csv")
        X_test = read_write.read(f"data/Xte{i}.csv")
        # X_test_cat = np.concatenate((X_test, X_test), axis=-1)

        y = read_write.read_labels(f"data/Ytr{i}.csv")
        # X_cat = np.concatenate((X, X), axis=-1)
        # X_test_cat = np.concatenate((X_test, X_test), axis=-1)
        ls_methods[i].learn(X, y)
        #  FOR ACCURACY ON TRAINING SET
        if accuracy_on_train_set:
            y_pred = ls_methods[i].predict(X)
            print(methods.accuracy(y, y_pred))
        y_test = ls_methods[i].predict(X_test)

        read_write.write(y_test,
                         "predictions/Yte.csv",
                         offset=i * 1000,
                         append=(i != 0))
Esempio n. 4
0
        # get the link in the thumbnail div
        image_link = a_thumb.find('a')

        # get the url and the title info
        image_url = image_link['href']
        image_meta = image_link['title'].replace('12 - inch', '12\"').replace(
            '12\u201d', '12\"').replace('33.3', '33')
        image_id = image_link['data-image-id']

        # write to the sub-dict
        image['image_url'] = image_url
        image['image_meta'] = image_meta
        image['gallery'] = gallery_title
        image['gallery_url'] = url
        image['posted_to_tumblr'] = False

        # write sub-dict to the main dict with id as key
        # if the image is not already in our dictionary, let's add it
        if image_id not in images:
            images[image_id] = image

        # if the image IS already in our dictionary, but hasn't been posted to social media yet, let's update the info in case something changed
        if image_id in images and images[image_id]['posted_to_tumblr'] == False:
            images[image_id] = image

    print('We now have images from', gallery_title)

#write it to json
read_write.write('images', images)

print('We just dumped', len(images), 'images to images.json')
Esempio n. 5
0
		# get the link in the thumbnail div
		image_link = a_thumb.find('a')

		# get the url and the title info
		image_url = image_link['href']
		image_meta = image_link['title'].replace('12 - inch', '12\"').replace('12\u201d', '12\"').replace('33.3', '33')
		image_id = image_link['data-image-id']

		# write to the sub-dict
		image['image_url'] = image_url
		image['image_meta'] = image_meta
		image['gallery'] = gallery_title
		image['gallery_url'] = url
		image['posted_to_tumblr'] = False

		# write sub-dict to the main dict with id as key
		# if the image is not already in our dictionary, let's add it
		if image_id not in images:
			images[image_id] = image

		# if the image IS already in our dictionary, but hasn't been posted to social media yet, let's update the info in case something changed
		if image_id in images and images[image_id]['posted_to_tumblr'] == False:
			images[image_id] = image

	print('We now have images from', gallery_title)

#write it to json
read_write.write('images', images)

print('We just dumped', len(images), 'images to images.json')