# # ############ Calculate SDRR of clean data ######################### # # #RR_sec_detrended is in ms and std_dev will be in ms # sdrr_curr=np.std(RR_sec_detrended_ms); #print("SDRR after filtering and detrending in ms for " + rec_name + "is: " + str(sdrr_curr)); #################### PLOT histograms for each record ############################################## # fig_hist,plot_hist=graphs.plotHistPercent(rec_name, RR_sec,100, "RR (sec)", "Percentage of total points", "RR interval histogram") # fig_hist.savefig(output_folder+"hist_"+record+".png") # plt.close(); ################### Append feature for 1 record to a list of lists ############################## all_features.append(feature_rec) #nlm.plot_ctm(rec_name_array,ctm_list_list,radius_array) #nlm.plot_dist(rec_name_array,dist_list_list,radius_array) rw.write_value(global_vocab, output_folder, 'global_vocab.txt', 'w') print(len(all_features)) #write to all_features to file rw.write_value(all_features, output_folder, "all_features_readable.txt", 'w') rw.write_features_to_file(all_features, output_folder, "all_features_pickle.txt") rw.write_features_to_file(global_vocab, output_folder, "global_vocab_pickle.txt") rw.write_features_to_file(rec_name_array, output_folder, "rec_name_array_pickle.txt") #plt.show()
import wfdb_setup as ws; import process_rr as pr; import data_cleaning as dc; import graphs import read_write as rw; import non_linear_measures as nlm; import classification_functions as cl ############################################################################## output_folder="/home/ubuntu/Documents/Thesis_work/results/19_oct_results/non_linear/sodp_analysis/non_linear_features_edges_changed/" #output_folder="/home/ubuntu/Documents/Thesis_work/results/19_oct_results/afpdb_test_records/" ### read values from text files ###### all_features=rw.read_features_frm_file(output_folder,"all_features_pickle.txt") rw.write_value(all_features,output_folder,"list_of_list_before_cleaning","w") global_vocab=rw.read_features_frm_file(output_folder,"global_vocab_pickle.txt") rec_name_array=rw.read_features_frm_file(output_folder,"rec_name_array_pickle.txt") ##################### change key value pairs of global vocab #################### inv_global_vocab = dict(zip(global_vocab.values(), global_vocab.keys())) #print type(inv_global_vocab.values()) all_features_list=inv_global_vocab.values() np.savetxt(output_folder+"all_features_list.txt",all_features_list,fmt="%s",delimiter=',',newline='\n') #generate class labels y=np.array(cl.generate_labels(rec_name_array)) print ("label array is: " + str(y))
# # pwave_var_0,pwave_var_1=pecg.calc_pwave_var(p_wave_times_0,p_wave_times_1) # feature_rec.append(pwave_var_0) # global_vocab_ecg,index_of_features_ecg=cl.fill_global_vocab("pwave_var_0", index_of_features_ecg, global_vocab_ecg) # # feature_rec.append(pwave_var_1) # global_vocab_ecg,index_of_features_ecg=cl.fill_global_vocab("pwave_var_1", index_of_features_ecg, global_vocab_ecg) # # # pwave_disp_0,pwave_disp_1=pecg.calc_pwave_disp(p_wave_times_0,p_wave_times_1) # # # feature_rec.append(pwave_disp_0) # global_vocab_ecg,index_of_features_ecg=cl.fill_global_vocab("pwave_disp_0", index_of_features_ecg, global_vocab_ecg) # # feature_rec.append(pwave_disp_1) # global_vocab_ecg,index_of_features_ecg=cl.fill_global_vocab("pwave_disp_1", index_of_features_ecg, global_vocab_ecg) # all_features.append(feature_rec) print(' dict is: ' + str((global_vocab_ecg))) print("all features is: ") print all_features print(len(all_features)) #write to all_features to file rw.write_value(all_features,output_folder,"all_features_readable.txt",'w') rw.write_features_to_file(all_features,output_folder,"all_features_pickle.txt") rw.write_features_to_file(global_vocab_ecg,output_folder,"global_vocab_pickle.txt") rw.write_features_to_file(rec_name_array, output_folder, "rec_name_array_pickle.txt") exit()
# #RR_sec_detrended is in ms and std_dev will be in ms # sdrr_curr=np.std(RR_sec_detrended_ms); #print("SDRR after filtering and detrending in ms for " + rec_name + "is: " + str(sdrr_curr)); #################### PLOT histograms for each record ############################################## # fig_hist,plot_hist=graphs.plotHistPercent(rec_name, RR_sec,100, "RR (sec)", "Percentage of total points", "RR interval histogram") # fig_hist.savefig(output_folder+"hist_"+record+".png") # plt.close(); ################### Append feature for 1 record to a list of lists ############################## all_features.append(feature_rec) #nlm.plot_ctm(rec_name_array,ctm_list_list,radius_array) #nlm.plot_dist(rec_name_array,dist_list_list,radius_array) rw.write_value(global_vocab, output_folder, 'global_vocab.txt', 'w') print(len(all_features)) #write to all_features to file rw.write_value(all_features,output_folder,"all_features_readable.txt",'w') rw.write_features_to_file(all_features,output_folder,"all_features_pickle.txt") rw.write_features_to_file(global_vocab,output_folder,"global_vocab_pickle.txt") rw.write_features_to_file(rec_name_array, output_folder, "rec_name_array_pickle.txt") plt.show()
import process_rr as pr import data_cleaning as dc import graphs import read_write as rw import non_linear_measures as nlm import classification_functions as cl ############################################################################## output_folder = "/home/ubuntu/Documents/Thesis_work/results/19_oct_results/non_linear/sodp_analysis/non_linear_features_edges_changed/" #output_folder="/home/ubuntu/Documents/Thesis_work/results/19_oct_results/afpdb_test_records/" ### read values from text files ###### all_features = rw.read_features_frm_file(output_folder, "all_features_pickle.txt") rw.write_value(all_features, output_folder, "list_of_list_before_cleaning", "w") global_vocab = rw.read_features_frm_file(output_folder, "global_vocab_pickle.txt") rec_name_array = rw.read_features_frm_file(output_folder, "rec_name_array_pickle.txt") ##################### change key value pairs of global vocab #################### inv_global_vocab = dict(zip(global_vocab.values(), global_vocab.keys())) #print type(inv_global_vocab.values()) all_features_list = inv_global_vocab.values() np.savetxt(output_folder + "all_features_list.txt", all_features_list, fmt="%s", delimiter=',', newline='\n')