Esempio n. 1
0
def readlabels(pathname):
  dt_i8 = np.dtype("<u1")
  with open(pathname, "rb") as bytestream:
    #Check magic is 2049
    magic = _read32(bytestream)
    num_inputs = _read32(bytestream)
    buf = bytestream.read(num_inputs*dt_i8.itemsize)
    labels = np.frombuffer(buf, dtype=dt_i8)
    labels.shape = (num_inputs)
  return(labels)
Esempio n. 2
0
def readlabels(pathname):
    dt_i8 = np.dtype("<u1")
    with open(pathname, "rb") as bytestream:
        #Check magic is 2049
        magic = _read32(bytestream)
        num_inputs = _read32(bytestream)
        buf = bytestream.read(num_inputs * dt_i8.itemsize)
        labels = np.frombuffer(buf, dtype=dt_i8)
        labels.shape = (num_inputs)
    return (labels)
Esempio n. 3
0
def readdata(pathname):
  dt_f32 = np.dtype("<f4")
  with open(pathname, "rb") as bytestream:
    #Check magic is 2049
    magic = _read32(bytestream)
    samples = _read32(bytestream)
    rows = _read32(bytestream)
    cols = _read32(bytestream)
    buf = bytestream.read(rows*cols*samples*dt_f32.itemsize)
    dataset = np.frombuffer(buf, dtype=dt_f32)
    dataset.shape = (samples, rows, cols)
  return(dataset)
Esempio n. 4
0
def readdata(pathname):
    dt_f32 = np.dtype("<f4")
    with open(pathname, "rb") as bytestream:
        #Check magic is 2049
        magic = _read32(bytestream)
        samples = _read32(bytestream)
        rows = _read32(bytestream)
        cols = _read32(bytestream)
        buf = bytestream.read(rows * cols * samples * dt_f32.itemsize)
        dataset = np.frombuffer(buf, dtype=dt_f32)
        dataset.shape = (samples, rows, cols)
    return (dataset)
Esempio n. 5
0
def readlabels2(pathname):
  dt_i8 = np.dtype("<u1")
  labels = []
  with open(pathname, "rb") as bytestream:
    #Check magic is 2049
    magic = _read32(bytestream)
    num_tests = _read32(bytestream)
    for i in range(0, num_tests):
      num_inputs = _read32(bytestream)
      buf = bytestream.read(num_inputs*dt_i8.itemsize)
      labels_temp = np.frombuffer(buf, dtype=dt_i8)
      labels_temp.shape = (num_inputs)
      labels.append(labels_temp)
  return(labels)
Esempio n. 6
0
def readlabels2(pathname):
    dt_i8 = np.dtype("<u1")
    labels = []
    with open(pathname, "rb") as bytestream:
        #Check magic is 2049
        magic = _read32(bytestream)
        num_tests = _read32(bytestream)
        for i in range(0, num_tests):
            num_inputs = _read32(bytestream)
            buf = bytestream.read(num_inputs * dt_i8.itemsize)
            labels_temp = np.frombuffer(buf, dtype=dt_i8)
            labels_temp.shape = (num_inputs)
            labels.append(labels_temp)
    return (labels)
Esempio n. 7
0
def readdata2(pathname):
  dt_f32 = np.dtype("<f4")
  dataset = []
  with open(pathname, "rb") as bytestream:
    #Check magic is 2049
    magic = _read32(bytestream)
    num_tests = _read32(bytestream)
    rows = _read32(bytestream)
    cols = _read32(bytestream)
    for i in range(0, num_tests):
      samples = _read32(bytestream)
      buf = bytestream.read(rows*cols*samples*dt_f32.itemsize)
      dataset_temp = np.frombuffer(buf, dtype=dt_f32)
      dataset_temp.shape = (samples, rows, cols)
      dataset.append(dataset_temp)
  return(dataset)
Esempio n. 8
0
def readdata2(pathname):
    dt_f32 = np.dtype("<f4")
    dataset = []
    with open(pathname, "rb") as bytestream:
        #Check magic is 2049
        magic = _read32(bytestream)
        num_tests = _read32(bytestream)
        rows = _read32(bytestream)
        cols = _read32(bytestream)
        for i in range(0, num_tests):
            samples = _read32(bytestream)
            buf = bytestream.read(rows * cols * samples * dt_f32.itemsize)
            dataset_temp = np.frombuffer(buf, dtype=dt_f32)
            dataset_temp.shape = (samples, rows, cols)
            dataset.append(dataset_temp)
    return (dataset)
path = samplespath+"/"+samplefolder
    
# Get Inputs
with open(path+"/input", "rb") as bytestream:
    num_inputs = _read8(bytestream)
    buf = bytestream.read(num_inputs * dt_i8.itemsize)
    labels = np.frombuffer(buf, dtype=dt_i8)

# Get Samples and Presamples
dataset = []
predataset = []
allsamples = sorted(os.listdir(path+"/sample"))
for sample in allsamples:
    with open(path+"/sample/"+sample, "rb") as bytestream:
        #Check magic is 2049
        magic = _read32(bytestream)
        rows = _read32(bytestream)
        cols = _read32(bytestream)
        buf = bytestream.read(max_samples * cols * dt_f32.itemsize)
        dataset.append(np.frombuffer(buf, dtype=dt_f32))
    with open(path+"/presample/"+sample, "rb") as bytestream:
        num_samples += 1
        #Check magic is 2049
        magic = _read32(bytestream)
        rows = _read32(bytestream)
        cols = _read32(bytestream)
        buf = bytestream.read(max_presamples * cols * dt_f32.itemsize)
        predataset.append(np.frombuffer(buf, dtype=dt_f32))

# Reshape
dataset = np.array(dataset)
Esempio n. 10
0
path = samplespath + "/" + samplefolder

# Get Inputs
with open(path + "/input", "rb") as bytestream:
    num_inputs = _read8(bytestream)
    buf = bytestream.read(num_inputs * dt_i8.itemsize)
    labels = np.frombuffer(buf, dtype=dt_i8)

# Get Samples and Presamples
dataset = []
predataset = []
allsamples = sorted(os.listdir(path + "/sample"))
for sample in allsamples:
    with open(path + "/sample/" + sample, "rb") as bytestream:
        #Check magic is 2049
        magic = _read32(bytestream)
        rows = _read32(bytestream)
        cols = _read32(bytestream)
        buf = bytestream.read(max_samples * cols * dt_f32.itemsize)
        dataset.append(np.frombuffer(buf, dtype=dt_f32))
    with open(path + "/presample/" + sample, "rb") as bytestream:
        num_samples += 1
        #Check magic is 2049
        magic = _read32(bytestream)
        rows = _read32(bytestream)
        cols = _read32(bytestream)
        buf = bytestream.read(max_presamples * cols * dt_f32.itemsize)
        predataset.append(np.frombuffer(buf, dtype=dt_f32))

# Reshape
dataset = np.array(dataset)
dt_f32 = np.dtype("<f4")
electrodes = [False, False, False, False, False, False, False, False]

masterfolder = "testing"
samplefolder = "sample"

#Read raw data
path = os.path.abspath(os.path.join(__file__,"../"))
testingpath = path + "/"+ masterfolder + "/" + samplefolder
filename = os.listdir(testingpath)[0]

max_rows = 260

with open(testingpath+"/"+filename, "rb") as readstream:
  magic = _read32(readstream)
  rows = _read32(readstream)
  cols = _read32(readstream)
  buf = readstream.read(max_rows * cols * dt_f32.itemsize)
  data = np.frombuffer(buf, dtype=dt_f32)
  data.shape = (max_rows, cols)

min_thresh = -60000
max_thresh = -10000
#min_thresh = -38000
#max_thresh = -12000
for i in range(0,data.shape[1]):
  if max(data[:,i]) < max_thresh and min(data[:,i]) > min_thresh:
    electrodes[i] = True

#DC Filter
Esempio n. 12
0
import numpy as np
from readbytes import _read8, _read32
from datafilters import apply_dc_filter
from sklearn.ensemble import RandomForestClassifier

num_channels = 8
max_rows = 360
masterfolder = "predicting"
dt_f32 = np.dtype("<f4")

#Read data from Hardware
path = os.path.abspath(os.path.join(__file__, "../"))
testingpath = path + "/predicting/sample"

with open(testingpath + "/" + sys.argv[1], "rb") as readstream:
    magic = _read32(readstream)
    rows = _read32(readstream)
    cols = _read32(readstream)
    buf = readstream.read(max_rows * cols * dt_f32.itemsize)
    data = np.frombuffer(buf, dtype=dt_f32)
    data.shape = (max_rows, cols)

#DC Filter
fs = 250
enable_dc = True
dc_lowcut = 1.0  #Only get alpha and beta, most related to movement
dc_highcut = 13.0
dc_order = 2
dc_type = "bandpass"
dc_func_type = "butter"