target_v = Variable(y_test.cuda(cuda_id), requires_grad=False) input_train = x_train target_train = y_train n_features = input_v.size(1) trainer = TrainerSimpleNet(n_classes, n_features, n_epochs, batch_size, cuda_id) trainer.fit(input_train, target_train) res = trainer.evaluate(input_v, target_v) print('Test: loss={:.4}, acc={:.2f}%, f1={:.4}'.format(*res)) return (fold_id, res) #%% if __name__ == "__main__": feat_data, col2ignore_r = read_feats() #%% # core_sets = [ # ['length_50th', # 'curvature_head_IQR', # 'quirkiness_50th', # 'speed_90th', # 'motion_mode_backward_fraction'], # # ['curvature_head_abs_90th', # 'width_midbody_norm_50th', # 'length_50th', # 'curvature_hips_abs_90th', # 'motion_mode_backward_fraction'],
print(db_name, x_t, yy[min_ind], yy.max()) plt.title(db_name) ff = os.path.join(save_dir, '{}_{}.pdf'.format(experimental_dataset, db_name)) plt.savefig(ff) #%% #%% #I forgot to add the last feature remaining so I have to do a dirty hack if os.path.basename(save_name).startswith('R_'): if True: #i forgot to add the last feature extracted... feat_data, col2ignore_r = read_feats(experimental_dataset) all_feats = [ x for x in feat_data['tierpsy'].columns if x not in col2ignore_r ] del feat_data #remove ventral signed columns that where not abs (This ones seemed useless...) v_cols = [ x for x in all_feats if not (('eigen' in x) or ('blob' in x)) ] v_cols_remove = [ x.replace('_abs', '') for x in v_cols if '_abs' in x ] all_feats = list(set(v_cols) - set(v_cols_remove)) all_feats = set(all_feats)
top16_manual = [ 'length_90th', 'width_midbody_norm_10th', 'curvature_hips_abs_90th', 'curvature_head_abs_90th', 'motion_mode_paused_fraction', 'motion_mode_paused_frequency', 'd_curvature_hips_abs_90th', 'd_curvature_head_abs_90th', 'width_head_base_norm_10th', 'motion_mode_backward_frequency', 'quirkiness_50th', 'minor_axis_50th', 'curvature_midbody_norm_abs_50th', 'relative_to_hips_radial_velocity_tail_tip_50th', 'relative_to_head_base_radial_velocity_head_tip_50th', 'relative_to_head_base_angular_velocity_head_tip_abs_90th' ] if __name__ == '__main__': experimental_dataset = 'SWDB' feat_data, col2ignore_r = read_feats(experimental_dataset, z_transform=False) #feat_data, col2ignore_r = read_feats(experimental_dataset, z_transform = True) df = feat_data['tierpsy'] del feat_data #this videos are clearly outliers. They are from 2009. Andre's normally says this date was #before they developed the final experimental protocol so I assume therewas a problem with them. bad_index = df.index[(df['strain'] == 'N2') & (df['length_50th'] > 1500)] df.drop(bad_index, inplace=True) #%% strain_sets = dict(mutants=[ 'Schafer Lab N2 (Bristol, UK)', 'dpy-20(e1282)IV', 'egl-5(n486)III', 'unc-9(e101)X', 'unc-77(e625)IV', 'ser-4(ok512)III', 'sma-2(e502)III', 'trp-4(sy695)I'