def evaluate_gym( env_name: str, model: ModelManager__Union, publisher: ModelPublisher__Union, num_eval_episodes: int, passing_score_bar: float, max_steps: Optional[int] = None, ): publisher_manager = publisher.value assert isinstance( publisher_manager, FileSystemPublisher ), f"publishing manager is type {type(publisher_manager)}, not FileSystemPublisher" env = EnvFactory.make(env_name) torchscript_path = publisher_manager.get_latest_published_model( model.value) jit_model = torch.jit.load(torchscript_path) policy = create_predictor_policy_from_model(jit_model) agent = Agent.create_for_env_with_serving_policy(env, policy) rewards = evaluate_for_n_episodes(n=num_eval_episodes, env=env, agent=agent, max_steps=max_steps) avg_reward = np.mean(rewards) logger.info(f"Average reward over {num_eval_episodes} is {avg_reward}.\n" f"List of rewards: {rewards}") assert (avg_reward >= passing_score_bar ), f"{avg_reward} fails to pass the bar of {passing_score_bar}!" return
def test_random_vs_lqr(self): """ Test random actions vs. a LQR controller. LQR controller should perform much better than random actions in the linear dynamics environment. """ env = EnvFactory.make("LinearDynamics-v0") num_test_episodes = 500 def random_policy(env, state): return np.random.uniform(env.action_space.low, env.action_space.high, env.action_dim) def lqr_policy(env, state): # Four matrices that characterize the environment A, B, Q, R = env.A, env.B, env.Q, env.R # Solve discrete algebraic Riccati equation: M = linalg.solve_discrete_are(A, B, Q, R) K = np.dot(linalg.inv(np.dot(np.dot(B.T, M), B) + R), (np.dot(np.dot(B.T, M), A))) state = state.reshape((-1, 1)) action = -K.dot(state).squeeze() return action mean_acc_rws_random = self.run_n_episodes(env, num_test_episodes, random_policy) mean_acc_rws_lqr = self.run_n_episodes(env, num_test_episodes, lqr_policy) logger.info( f"Mean acc. reward of random policy: {mean_acc_rws_random}") logger.info(f"Mean acc. reward of LQR policy: {mean_acc_rws_lqr}") assert mean_acc_rws_lqr > mean_acc_rws_random
def offline_gym( env: str, pkl_path: str, num_episodes_for_data_batch: int, max_steps: Optional[int], seed: Optional[int] = None, ): """ Generate samples from a DiscreteRandomPolicy on the Gym environment and saves results in a pandas df parquet. """ initialize_seed(seed) env = EnvFactory.make(env) policy = DiscreteRandomPolicy.create_for_env(env) dataset = RLDataset() for i in range(num_episodes_for_data_batch): logger.info(f"Starting episode {i}") post_step = log_data_post_step(dataset=dataset, mdp_id=str(i), env=env) agent = Agent.create_for_env(env, policy, post_transition_callback=post_step) run_episode(env=env, agent=agent, max_steps=max_steps) logger.info(f"Saving dataset with {len(dataset)} samples to {pkl_path}") df = dataset.to_pandas_df() df.to_pickle(pkl_path)
def evaluate_gym( env_name: str, model: torch.nn.Module, eval_temperature: float, num_eval_episodes: int, passing_score_bar: float, max_steps: Optional[int] = None, ): env: gym.Env = EnvFactory.make(env_name) policy = create_predictor_policy_from_model( env, model, eval_temperature=eval_temperature) # since we already return softmax action, override action_extractor agent = Agent.create_for_env( env, policy=policy, action_extractor=policy.get_action_extractor()) rewards = [] for _ in range(num_eval_episodes): ep_reward = run_episode(env=env, agent=agent, max_steps=max_steps) rewards.append(ep_reward) avg_reward = np.mean(rewards) logger.info(f"Average reward over {num_eval_episodes} is {avg_reward}.\n" f"List of rewards: {rewards}") assert (avg_reward >= passing_score_bar ), f"{avg_reward} fails to pass the bar of {passing_score_bar}!"
def evaluate_gym( env: str, model, eval_temperature: float, num_eval_episodes: int, passing_score_bar: float, max_steps: Optional[int] = None, ): predictor = DiscreteDqnTorchPredictor(model) predictor.softmax_temperature = eval_temperature env = EnvFactory.make(env) policy = TorchPredictorPolicy(predictor) agent = Agent(policy=policy, action_extractor=lambda x: x.item()) rewards = [] for _ in range(num_eval_episodes): ep_reward = run_episode(env=env, agent=agent, max_steps=max_steps) rewards.append(ep_reward) avg_reward = np.mean(rewards) logger.info(f"Average reward over {num_eval_episodes} is {avg_reward}, " f"which passes the bar of {passing_score_bar}!\n" f"List of rewards: {rewards}") assert avg_reward >= passing_score_bar
def offline_gym( env_name: str, pkl_path: str, num_train_transitions: int, max_steps: Optional[int], seed: Optional[int] = None, ): """ Generate samples from a DiscreteRandomPolicy on the Gym environment and saves results in a pandas df parquet. """ initialize_seed(seed) env = EnvFactory.make(env_name) replay_buffer = ReplayBuffer.create_from_env( env=env, replay_memory_size=num_train_transitions, batch_size=1) fill_replay_buffer(env, replay_buffer, num_train_transitions) if isinstance(env.action_space, gym.spaces.Discrete): is_discrete_action = True else: assert isinstance(env.action_space, gym.spaces.Box) is_discrete_action = False df = replay_buffer_to_pre_timeline_df(is_discrete_action, replay_buffer) logger.info(f"Saving dataset with {len(df)} samples to {pkl_path}") df.to_pickle(pkl_path)
def run_test_offline( env_name: str, max_steps: Optional[int], model: ModelManager__Union, replay_memory_size: int, num_batches_per_epoch: int, num_train_epochs: int, passing_score_bar: float, num_eval_episodes: int, use_gpu: bool, ): env = EnvFactory.make(env_name) env.seed(SEED) env.action_space.seed(SEED) normalization = build_normalizer(env) logger.info(f"Normalization is: \n{pprint.pformat(normalization)}") manager = model.value trainer = manager.initialize_trainer( use_gpu=use_gpu, reward_options=RewardOptions(), normalization_data_map=normalization, ) # first fill the replay buffer to burn_in replay_buffer = ReplayBuffer.create_from_env( env=env, replay_memory_size=replay_memory_size, batch_size=trainer.minibatch_size, ) # always fill full RB fill_replay_buffer( env=env, replay_buffer=replay_buffer, desired_size=replay_memory_size ) device = torch.device("cuda") if use_gpu else None # pyre-fixme[6]: Expected `device` for 2nd param but got `Optional[torch.device]`. trainer_preprocessor = make_replay_buffer_trainer_preprocessor(trainer, device, env) writer = SummaryWriter() with summary_writer_context(writer): for epoch in range(num_train_epochs): logger.info(f"Evaluating before epoch {epoch}: ") eval_rewards = evaluate_cem(env, manager, max_steps, 1) for _ in tqdm(range(num_batches_per_epoch)): train_batch = replay_buffer.sample_transition_batch_tensor() preprocessed_batch = trainer_preprocessor(train_batch) trainer.train(preprocessed_batch) logger.info(f"Evaluating after training for {num_train_epochs} epochs: ") eval_rewards = evaluate_cem(env, manager, max_steps, num_eval_episodes) mean_rewards = np.mean(eval_rewards) assert ( mean_rewards >= passing_score_bar ), f"{mean_rewards} doesn't pass the bar {passing_score_bar}."
def run_test( env: str, model: ModelManager__Union, replay_memory_size: int, train_every_ts: int, train_after_ts: int, num_episodes: int, max_steps: Optional[int], last_score_bar: float, ): env = EnvFactory.make(env) env.seed(SEED) env.action_space.seed(SEED) normalization = build_normalizer(env) logger.info(f"Normalization is {normalization}") manager = model.value trainer = manager.initialize_trainer( use_gpu=False, reward_options=RewardOptions(), normalization_data_map=normalization, ) policy = manager.create_policy() replay_buffer = ReplayBuffer.create_from_env( env=env, replay_memory_size=replay_memory_size, batch_size=trainer.minibatch_size, ) post_step = train_with_replay_buffer_post_step( replay_buffer=replay_buffer, trainer=trainer, training_freq=train_every_ts, batch_size=trainer.minibatch_size, replay_burnin=train_after_ts, ) agent = Agent.create_for_env(env, policy=policy, post_transition_callback=post_step) reward_history = [] for i in range(num_episodes): logger.info(f"running episode {i}") ep_reward = run_episode(env=env, agent=agent, max_steps=max_steps) reward_history.append(ep_reward) assert reward_history[-1] >= last_score_bar, ( f"reward after {len(reward_history)} episodes is {reward_history[-1]}," f"less than < {last_score_bar}...\n" f"Full reward history: {reward_history}") return reward_history
def _create_env(self, gymenv: Union[str, Env], random_seed: Optional[int]): """ Creates a gym environment object and checks if it is supported. We support environments that supply Box(x, ) state representations and require Discrete(y) or Box(y,) action inputs. :param gymenv: String identifier for desired environment or environment object itself. """ if isinstance(gymenv, Env): self.env = gymenv self.env_name = gymenv.unwrapped.spec.id else: if gymenv not in [e.id for e in gym.envs.registry.all()]: raise Exception( "Env {} not found in OpenAI Gym.".format(gymenv)) self.env = EnvFactory.make(gymenv) self.env_name = gymenv if random_seed is not None: self.env.seed(random_seed) self.env.action_space.seed(random_seed) # type: ignore supports_state = isinstance( self.env.observation_space, gym.spaces.Box) and len( self.env.observation_space.shape) in [1, 3] supports_action = type(self.env.action_space) in ( gym.spaces.Discrete, gym.spaces.Box, ) if not supports_state and supports_action: raise Exception( "Unsupported environment state or action type: {}, {}".format( self.env.observation_space, self.env.action_space)) self.action_space = self.env.action_space if isinstance(self.env.action_space, gym.spaces.Discrete): self.action_type = EnvType.DISCRETE_ACTION self.action_dim = self.env.action_space.n elif isinstance(self.env.action_space, gym.spaces.Box): self.action_type = EnvType.CONTINUOUS_ACTION self.action_dim = self.env.action_space.shape[0] # type: ignore if len(self.env.observation_space.shape) == 1: # type: ignore self.state_dim = self.env.observation_space.shape[ 0] # type: ignore self.img = False elif len(self.env.observation_space.shape) == 3: # type: ignore self.height, self.width, self.num_input_channels = ( self.env.observation_space.shape # type: ignore ) self.img = True
def train_mdnrnn_and_train_on_embedded_env( env_name: str, embedding_model: ModelManager__Union, num_embedding_train_transitions: int, seq_len: int, batch_size: int, num_embedding_train_epochs: int, train_model: ModelManager__Union, num_state_embed_transitions: int, num_agent_train_epochs: int, num_agent_eval_epochs: int, use_gpu: bool, passing_score_bar: float, # pyre-fixme[9]: saved_mdnrnn_path has type `str`; used as `None`. saved_mdnrnn_path: str = None, ): """ Train an agent on embedded states by the MDNRNN. """ env = EnvFactory.make(env_name) env.seed(SEED) embedding_manager = embedding_model.value embedding_trainer = embedding_manager.initialize_trainer( use_gpu=use_gpu, reward_options=RewardOptions(), normalization_data_map=build_normalizer(env), ) device = "cuda" if use_gpu else "cpu" embedding_trainer_preprocessor = make_replay_buffer_trainer_preprocessor( embedding_trainer, device, env ) if saved_mdnrnn_path is None: # train from scratch embedding_trainer = train_mdnrnn( env=env, trainer=embedding_trainer, trainer_preprocessor=embedding_trainer_preprocessor, num_train_transitions=num_embedding_train_transitions, seq_len=seq_len, batch_size=batch_size, num_train_epochs=num_embedding_train_epochs, ) else: # load a pretrained model, and just evaluate it embedding_trainer.memory_network.mdnrnn.load_state_dict( torch.load(saved_mdnrnn_path) ) # create embedding dataset embed_rb, state_min, state_max = create_embed_rl_dataset( env=env, memory_network=embedding_trainer.memory_network, num_state_embed_transitions=num_state_embed_transitions, batch_size=batch_size, seq_len=seq_len, hidden_dim=embedding_trainer.params.hidden_size, use_gpu=use_gpu, ) embed_env = StateEmbedEnvironment( gym_env=env, mdnrnn=embedding_trainer.memory_network, max_embed_seq_len=seq_len, state_min_value=state_min, state_max_value=state_max, ) agent_manager = train_model.value agent_trainer = agent_manager.initialize_trainer( use_gpu=use_gpu, reward_options=RewardOptions(), normalization_data_map=build_normalizer(embed_env), ) device = "cuda" if use_gpu else "cpu" agent_trainer_preprocessor = make_replay_buffer_trainer_preprocessor( agent_trainer, device, env ) num_batch_per_epoch = embed_rb.size // batch_size for epoch in range(num_agent_train_epochs): for _ in tqdm(range(num_batch_per_epoch), desc=f"epoch {epoch}"): batch = embed_rb.sample_transition_batch_tensor(batch_size=batch_size) preprocessed_batch = agent_trainer_preprocessor(batch) agent_trainer.train(preprocessed_batch) # evaluate model rewards = [] policy = agent_manager.create_policy(serving=False) agent = Agent.create_for_env(embed_env, policy=policy, device=device) for i in range(num_agent_eval_epochs): ep_reward = run_episode(env=embed_env, agent=agent) rewards.append(ep_reward) logger.info(f"Finished eval episode {i} with reward {ep_reward}.") logger.info(f"Average eval reward is {np.mean(rewards)}.") assert ( np.mean(rewards) >= passing_score_bar ), f"average reward doesn't pass our bar {passing_score_bar}" return rewards
def train_mdnrnn_and_compute_feature_stats( env_name: str, model: ModelManager__Union, num_train_transitions: int, num_test_transitions: int, seq_len: int, batch_size: int, num_train_epochs: int, use_gpu: bool, saved_mdnrnn_path: Optional[str] = None, ): """ Train MDNRNN Memory Network and compute feature importance/sensitivity. """ env: gym.Env = EnvFactory.make(env_name) env.seed(SEED) manager = model.value trainer = manager.initialize_trainer( use_gpu=use_gpu, reward_options=RewardOptions(), normalization_data_map=build_normalizer(env), ) device = "cuda" if use_gpu else "cpu" trainer_preprocessor = make_replay_buffer_trainer_preprocessor(trainer, device, env) test_replay_buffer = ReplayBuffer.create_from_env( env=env, replay_memory_size=num_test_transitions, batch_size=batch_size, stack_size=seq_len, return_everything_as_stack=True, ) fill_replay_buffer(env, test_replay_buffer, num_test_transitions) if saved_mdnrnn_path is None: # train from scratch trainer = train_mdnrnn( env=env, trainer=trainer, trainer_preprocessor=trainer_preprocessor, num_train_transitions=num_train_transitions, seq_len=seq_len, batch_size=batch_size, num_train_epochs=num_train_epochs, test_replay_buffer=test_replay_buffer, ) else: # load a pretrained model, and just evaluate it trainer.memory_network.mdnrnn.load_state_dict(torch.load(saved_mdnrnn_path)) with torch.no_grad(): trainer.memory_network.mdnrnn.eval() test_batch = test_replay_buffer.sample_transition_batch_tensor( batch_size=test_replay_buffer.size ) preprocessed_test_batch = trainer_preprocessor(test_batch) feature_importance = calculate_feature_importance( env=env, trainer=trainer, use_gpu=use_gpu, test_batch=preprocessed_test_batch, ) feature_sensitivity = calculate_feature_sensitivity( env=env, trainer=trainer, use_gpu=use_gpu, test_batch=preprocessed_test_batch, ) trainer.memory_network.mdnrnn.train() return feature_importance, feature_sensitivity
def run_test( env: str, model: ModelManager__Union, replay_memory_size: int, train_every_ts: int, train_after_ts: int, num_train_episodes: int, max_steps: Optional[int], passing_score_bar: float, num_eval_episodes: int, use_gpu: bool, ): env = EnvFactory.make(env) env.seed(SEED) env.action_space.seed(SEED) normalization = build_normalizer(env) logger.info(f"Normalization is {normalization}") manager = model.value trainer = manager.initialize_trainer( use_gpu=use_gpu, reward_options=RewardOptions(), normalization_data_map=normalization, ) replay_buffer = ReplayBuffer.create_from_env( env=env, replay_memory_size=replay_memory_size, batch_size=trainer.minibatch_size, ) device = torch.device("cuda") if use_gpu else None post_step = train_with_replay_buffer_post_step( replay_buffer=replay_buffer, trainer=trainer, training_freq=train_every_ts, batch_size=trainer.minibatch_size, replay_burnin=train_after_ts, device=device, ) training_policy = manager.create_policy(serving=False) agent = Agent.create_for_env(env, policy=training_policy, post_transition_callback=post_step, device=device) train_rewards = [] for i in range(num_train_episodes): ep_reward = run_episode(env=env, agent=agent, max_steps=max_steps) train_rewards.append(ep_reward) logger.info(f"Finished training episode {i} with reward {ep_reward}.") assert train_rewards[-1] >= passing_score_bar, ( f"reward after {len(train_rewards)} episodes is {train_rewards[-1]}," f"less than < {passing_score_bar}...\n" f"Full reward history: {train_rewards}") logger.info("============Train rewards=============") logger.info(train_rewards) def gym_to_reagent_serving( obs: np.array) -> Tuple[torch.Tensor, torch.Tensor]: obs_tensor = torch.tensor(obs).float().unsqueeze(0) presence_tensor = torch.ones_like(obs_tensor) return (obs_tensor, presence_tensor) serving_policy = manager.create_policy(serving=True) agent = Agent.create_for_env(env, policy=serving_policy, obs_preprocessor=gym_to_reagent_serving) eval_rewards = [] for i in range(num_eval_episodes): ep_reward = run_episode(env=env, agent=agent, max_steps=max_steps) eval_rewards.append(ep_reward) logger.info(f"Finished eval episode {i} with reward {ep_reward}.") assert np.mean(eval_rewards) >= passing_score_bar, ( f"Predictor reward is {np.mean(eval_rewards)}," f"less than < {passing_score_bar}...\n" f"Full eval rewards: {eval_rewards}.") logger.info("============Eval rewards==============") logger.info(eval_rewards)
def test_pocman(self): env = EnvFactory.make("Pocman-v0") env.seed(313) mean_acc_reward = self._test_env(env) assert -80 <= mean_acc_reward <= -70
def test_string_game(self): env = EnvFactory.make("StringGame-v0") env.seed(313) mean_acc_reward = self._test_env(env) assert 0.1 >= mean_acc_reward
def run_test( env_name: str, model: ModelManager__Union, replay_memory_size: int, train_every_ts: int, train_after_ts: int, num_train_episodes: int, max_steps: Optional[int], passing_score_bar: float, num_eval_episodes: int, use_gpu: bool, ): env = EnvFactory.make(env_name) env.seed(SEED) env.action_space.seed(SEED) normalization = build_normalizer(env) logger.info(f"Normalization is: \n{pprint.pformat(normalization)}") manager = model.value trainer = manager.initialize_trainer( use_gpu=use_gpu, reward_options=RewardOptions(), normalization_data_map=normalization, ) training_policy = manager.create_policy(serving=False) replay_buffer = ReplayBuffer.create_from_env( env=env, replay_memory_size=replay_memory_size, batch_size=trainer.minibatch_size, ) device = torch.device("cuda") if use_gpu else None # first fill the replay buffer to burn_in train_after_ts = max(train_after_ts, trainer.minibatch_size) fill_replay_buffer(env=env, replay_buffer=replay_buffer, desired_size=train_after_ts) post_step = train_with_replay_buffer_post_step( replay_buffer=replay_buffer, env=env, trainer=trainer, training_freq=train_every_ts, batch_size=trainer.minibatch_size, device=device, ) agent = Agent.create_for_env( env, policy=training_policy, post_transition_callback=post_step, # pyre-fixme[6]: Expected `Union[str, torch.device]` for 4th param but got # `Optional[torch.device]`. device=device, ) writer = SummaryWriter() with summary_writer_context(writer): train_rewards = [] for i in range(num_train_episodes): trajectory = run_episode(env=env, agent=agent, mdp_id=i, max_steps=max_steps) ep_reward = trajectory.calculate_cumulative_reward() train_rewards.append(ep_reward) logger.info( f"Finished training episode {i} with reward {ep_reward}.") assert train_rewards[-1] >= passing_score_bar, ( f"reward after {len(train_rewards)} episodes is {train_rewards[-1]}," f"less than < {passing_score_bar}...\n" f"Full reward history: {train_rewards}") logger.info("============Train rewards=============") logger.info(train_rewards) serving_policy = manager.create_policy(serving=True) agent = Agent.create_for_env_with_serving_policy(env, serving_policy) eval_rewards = evaluate_for_n_episodes(n=num_eval_episodes, env=env, agent=agent, max_steps=max_steps).squeeze(1) assert np.mean(eval_rewards) >= passing_score_bar, ( f"Predictor reward is {np.mean(eval_rewards)}," f"less than < {passing_score_bar}...\n" f"Full eval rewards: {eval_rewards}.") logger.info("============Eval rewards==============") logger.info(eval_rewards)
def run_test( env_name: str, model: ModelManager__Union, replay_memory_size: int, train_every_ts: int, train_after_ts: int, num_train_episodes: int, max_steps: Optional[int], passing_score_bar: float, num_eval_episodes: int, use_gpu: bool, ): env = EnvFactory.make(env_name) env.seed(SEED) env.action_space.seed(SEED) normalization = build_normalizer(env) logger.info(f"Normalization is: \n{pprint.pformat(normalization)}") manager = model.value try: # pyre-fixme[16]: `Env` has no attribute `state_feature_config_provider`. manager.state_feature_config_provider = env.state_feature_config_provider logger.info( f"Using environment's state_feature_config_provider.\n" f"{manager.state_feature_config_provider}" ) except AttributeError: logger.info("state_feature_config_provider override not applicable") trainer = manager.initialize_trainer( use_gpu=use_gpu, reward_options=RewardOptions(), normalization_data_map=normalization, ) training_policy = manager.create_policy(serving=False) replay_buffer = ReplayBuffer.create_from_env( env=env, replay_memory_size=replay_memory_size, batch_size=trainer.minibatch_size, ) device = torch.device("cuda") if use_gpu else torch.device("cpu") # first fill the replay buffer to burn_in train_after_ts = max(train_after_ts, trainer.minibatch_size) fill_replay_buffer( env=env, replay_buffer=replay_buffer, desired_size=train_after_ts ) post_step = train_with_replay_buffer_post_step( replay_buffer=replay_buffer, env=env, trainer=trainer, training_freq=train_every_ts, batch_size=trainer.minibatch_size, device=device, ) agent = Agent.create_for_env( env, policy=training_policy, post_transition_callback=post_step, device=device ) writer = SummaryWriter() with summary_writer_context(writer): train_rewards = [] for i in range(num_train_episodes): trajectory = run_episode( env=env, agent=agent, mdp_id=i, max_steps=max_steps ) ep_reward = trajectory.calculate_cumulative_reward() train_rewards.append(ep_reward) logger.info( f"Finished training episode {i} (len {len(trajectory)})" f" with reward {ep_reward}." ) logger.info("============Train rewards=============") logger.info(train_rewards) logger.info(f"average: {np.mean(train_rewards)};\tmax: {np.max(train_rewards)}") # Check whether the max score passed the score bar; we explore during training # the return could be bad (leading to flakiness in C51 and QRDQN). assert np.max(train_rewards) >= passing_score_bar, ( f"max reward ({np.max(train_rewards)})after training for " f"{len(train_rewards)} episodes is less than < {passing_score_bar}.\n" ) serving_policy = manager.create_policy(serving=True) agent = Agent.create_for_env_with_serving_policy(env, serving_policy) eval_rewards = evaluate_for_n_episodes( n=num_eval_episodes, env=env, agent=agent, max_steps=max_steps ).squeeze(1) logger.info("============Eval rewards==============") logger.info(eval_rewards) logger.info(f"average: {np.mean(eval_rewards)};\tmax: {np.max(eval_rewards)}") assert np.mean(eval_rewards) >= passing_score_bar, ( f"Predictor reward is {np.mean(eval_rewards)}," f"less than < {passing_score_bar}.\n" )
def train_seq2reward_and_compute_reward_mse( env_name: str, model: ModelManager__Union, num_train_transitions: int, num_test_transitions: int, seq_len: int, batch_size: int, num_train_epochs: int, use_gpu: bool, saved_seq2reward_path: Optional[str] = None, ): """ Train Seq2Reward Network and compute reward mse. """ env: gym.Env = EnvFactory.make(env_name) env.seed(SEED) manager = model.value trainer = manager.initialize_trainer( use_gpu=use_gpu, reward_options=RewardOptions(), normalization_data_map=build_normalizer(env), ) device = "cuda" if use_gpu else "cpu" # pyre-fixme[6]: Expected `device` for 2nd param but got `str`. trainer_preprocessor = make_replay_buffer_trainer_preprocessor(trainer, device, env) test_replay_buffer = ReplayBuffer.create_from_env( env=env, replay_memory_size=num_test_transitions, batch_size=batch_size, stack_size=seq_len, return_everything_as_stack=True, ) fill_replay_buffer(env, test_replay_buffer, num_test_transitions) if saved_seq2reward_path is None: # train from scratch trainer = train_seq2reward( env=env, trainer=trainer, trainer_preprocessor=trainer_preprocessor, num_train_transitions=num_train_transitions, seq_len=seq_len, batch_size=batch_size, num_train_epochs=num_train_epochs, test_replay_buffer=test_replay_buffer, ) else: # load a pretrained model, and just evaluate it trainer.seq2reward_network.load_state_dict(torch.load(saved_seq2reward_path)) state_dim = env.observation_space.shape[0] with torch.no_grad(): trainer.seq2reward_network.eval() test_batch = test_replay_buffer.sample_transition_batch( batch_size=test_replay_buffer.size ) preprocessed_test_batch = trainer_preprocessor(test_batch) adhoc_action_padding(preprocessed_test_batch, state_dim=state_dim) losses = trainer.get_loss(preprocessed_test_batch) detached_losses = losses.cpu().detach().item() trainer.seq2reward_network.train() return detached_losses