Esempio n. 1
0
def main(args):
    hidden_units = args.hidden_units
    msg_dim = args.msg_dim
    model_path = os.getcwd() + "/" + args.model_dir

    ray.init(log_to_driver=False)

    env_test_instance = gym.make('BipedalWalker-v3')

    if args.baseline:
        from smp.baseline import TD3Net
        action_dimension = copy(env_test_instance.action_space.shape[0])
    else:
        from smp.smp import TD3Net
        action_dimension = 1

    model_kwargs = {
        # action dimension for modular actions
        'action_dimension': action_dimension,
        'min_action': copy(env_test_instance.action_space.low)[0],
        'max_action': copy(env_test_instance.action_space.high)[0],
        'msg_dimension': msg_dim,
        'fix_sigma': True,
        'hidden_units': hidden_units
    }
    del env_test_instance

    manager = SampleManager(TD3Net,
                            'BipedalWalker-v3',
                            num_parallel=(os.cpu_count() - 1),
                            total_steps=150,
                            action_sampling_type="continuous_normal_diagonal",
                            is_tf=True,
                            model_kwargs=model_kwargs)

    manager.load_model(model_path)
    manager.test(200, test_episodes=5, render=True)

    ray.shutdown()
Esempio n. 2
0
            optimizer.apply_gradients(
                zip(gradients, agent.model.trainable_variables))

            actor_losses.append(actor_loss)
            critic_losses.append(critic_loss)
            losses.append(total_loss)

        # Set new weights
        manager.set_agent(agent.get_weights())

        print('TEST')

        # Update aggregator
        steps, current_rewards = manager.test(
            max_steps=1000,
            test_episodes=10,
            render=False,
            evaluation_measure="time_and_reward",
        )

        #if (e+1) % 5 == 0:
        manager.test(max_steps=1000, test_episodes=1, render=True)
        manager.update_aggregator(loss=losses,
                                  reward=current_rewards,
                                  time=steps)

        # Collect all rewards
        rewards.extend(current_rewards)
        # Average reward over last 100 episodes
        avg_reward = sum(rewards[-100:]) / min(len(rewards), 100)

        # Print progress
Esempio n. 3
0
    saving_path = os.getcwd() + "/progress_cartpole"

    # keys for replay buffer -> what you will need for optimization
    optim_keys = ["state", "action", "reward", "state_new", "not_done"]

    # initialize buffer
    manager.initilize_buffer(buffer_size, optim_keys)

    # initilize progress aggregator
    manager.initialize_aggregator(path=saving_path,
                                  saving_after=5,
                                  aggregator_keys=["loss", "time_steps"])

    # initial testing:
    print("test before training: ")
    manager.test(test_steps, test_episodes=10, do_print=True, render=True)

    # get initial agent
    agent = manager.get_agent()

    for e in range(epochs):

        # training core

        # experience replay
        print("collecting experience..")
        data = manager.get_data(total_steps=100)
        manager.store_in_buffer(data)

        # sample data to optimize on from buffer
        sample_dict = manager.sample(sample_size)
Esempio n. 4
0
    optim_keys = ["state", "action", "reward", "state_new", "not_done"]

    # initialize buffer
    manager.initilize_buffer(buffer_size, optim_keys)

    # initilize progress aggregator
    manager.initialize_aggregator(
        path=saving_path, saving_after=5, aggregator_keys=["loss", "time_steps"]
    )

    # this was given
    print("test before training: ")
    manager.test(
        max_steps=50,
        test_episodes=5,
        #render=True,
        #do_print=True,
        evaluation_measure="time_and_reward",
    )

    # get initial agent
    # agent = manager.get_agent()
    losses = []

    for epoch in range(epochs):
        # training core
        print("collecting experience..")
        data = manager.get_data()
        manager.store_in_buffer(data)
        # sample data to optimize on
        sample_dict = manager.sample(sample_size)
Esempio n. 5
0
    # Initialize
    ray.init(log_to_driver=False)
    manager = SampleManager(**kwargs)

    # Where to load your results from
    loading_path = os.getcwd() + "/progress_CartPole"

    # Load model
    manager.load_model(loading_path)
    print("done")
    print("testing optimized agent")
    manager.test(
        1000,
        test_episodes=10,
        render=True,
        do_print=True,
        evaluation_measure="time_and_reward",
    )

    print('Prepare LunarLander')
    env = gym.make("LunarLander-v2")

    model_kwargs = {"layers": [32, 32, 32], "num_actions": env.action_space.n}

    kwargs = {
        "model": QNet,
        "environment": "LunarLander-v2",
        "num_parallel": 1,
        "total_steps": 1000,
        "model_kwargs": model_kwargs,
Esempio n. 6
0
            with tf.GradientTape() as tape:
                # positive critic loss for gradient descent with MSE
                critic_loss = tf.reduce_mean((mc - agent.v(state))**2)

            critic_gradients = tape.gradient(
                critic_loss, agent.model.critic.trainable_variables)
            optimizer.apply_gradients(
                zip(critic_gradients, agent.model.critic.trainable_variables))

            total_loss += actor_loss + critic_loss

            # Update the agent
            manager.set_agent(agent.get_weights())
            agent = manager.get_agent()

        reward = manager.test(test_steps, evaluation_measure="reward")
        manager.update_aggregator(loss=total_loss, reward=reward)
        # print progress
        print(
            f"epoch ::: {e}  loss ::: {total_loss}   avg env steps ::: {np.mean(reward)}"
        )

        if e % saving_after == 0:
            # you can save models
            manager.save_model(saving_path, e)

    # and load mmodels
    manager.load_model(saving_path)
    print("done")
    print("testing optimized agent")
    manager.test(test_steps, test_episodes=10, render=True)
Esempio n. 7
0
    # keys needed for tabular q
    optim_keys = ['state', 'action', 'reward', 'state_new', 'not_done']

    # initialize buffer
    manager.initialize_buffer(buffer_size)
    agent = manager.get_agent()

    # initialize progress aggregator
    manager.initialize_aggregator(path=saving_path,
                                  saving_after=saving_after,
                                  aggregator_keys=['time_steps', 'rewards'])

    # initial testing:
    print('test before training: ')
    manager.test(test_steps,
                 test_episodes=10,
                 do_print=True,
                 evaluation_measure='time_and_reward')

    for e in range(epochs):

        print('collecting experience..')
        data = manager.get_data()
        manager.store_in_buffer(data)

        # sample data to optimize on from buffer
        experience_dict = manager.sample(sample_size)

        print('optimizing...')
        for states, actions, rewards, states_new, not_dones in zip(
                *[experience_dict[k] for k in optim_keys]):
            train_step(agent.model, states, actions, rewards, states_new,
Esempio n. 8
0
def train_td3(args, model, action_dimension=None):

    print(args)

    tf.keras.backend.set_floatx('float32')

    ray.init(log_to_driver=False)

    # hyper parameters
    buffer_size = args.buffer_size  # 10e6 in their repo, not possible with our ram
    epochs = args.epochs
    saving_path = os.getcwd() + "/" + args.saving_dir
    saving_after = 5
    sample_size = args.sample_size
    optim_batch_size = args.batch_size
    gamma = args.gamma
    test_steps = 100  # 1000 in their repo
    policy_delay = 2
    rho = .046
    policy_noise = args.policy_noise
    policy_noise_clip = .5
    msg_dim = args.msg_dim  # 32 in their repo
    learning_rate = args.learning_rate

    save_args(args, saving_path)

    env_test_instance = gym.make('BipedalWalker-v3')
    if action_dimension is None:
        action_dimension = copy(env_test_instance.action_space.shape[0])
    model_kwargs = {
        # action dimension for modular actions
        'action_dimension': action_dimension,
        'min_action': copy(env_test_instance.action_space.low)[0],
        'max_action': copy(env_test_instance.action_space.high)[0],
        'msg_dimension': msg_dim,
        'fix_sigma': True,
        'hidden_units': args.hidden_units
    }
    del env_test_instance

    manager = SampleManager(model,
                            'BipedalWalker-v3',
                            num_parallel=(os.cpu_count() - 1),
                            total_steps=150,
                            action_sampling_type="continuous_normal_diagonal",
                            is_tf=True,
                            model_kwargs=model_kwargs)

    optim_keys = [
        'state',
        'action',
        'reward',
        'state_new',
        'not_done',
    ]

    manager.initialize_buffer(buffer_size, optim_keys)

    manager.initialize_aggregator(path=saving_path,
                                  saving_after=saving_after,
                                  aggregator_keys=["loss", "reward"])

    agent = manager.get_agent()

    optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)

    # fill buffer
    print("Filling buffer before training..")
    while len(manager.buffer.buffer[
            manager.buffer.keys[0]]) < manager.buffer.size:
        # Gives you state action reward trajectories
        data = manager.get_data()
        manager.store_in_buffer(data)

    # track time while training
    timer = time.time()
    last_t = timer

    target_agent = manager.get_agent()
    for e in range(epochs):
        # off policy
        sample_dict = manager.sample(sample_size, from_buffer=True)
        print(f"collected data for: {sample_dict.keys()}")

        # cast values to float32 and create data dict
        sample_dict['state'] = tf.cast(sample_dict['state'], tf.float32)
        sample_dict['action'] = tf.cast(sample_dict['action'], tf.float32)
        sample_dict['reward'] = tf.cast(sample_dict['reward'], tf.float32)
        sample_dict['state_new'] = tf.cast(sample_dict['state_new'],
                                           tf.float32)
        sample_dict['not_done'] = tf.cast(sample_dict['not_done'], tf.float32)
        data_dict = dict_to_dict_of_datasets(sample_dict,
                                             batch_size=optim_batch_size)

        total_loss = 0
        for state, action, reward, state_new, not_done in \
                zip(data_dict['state'],
                    data_dict['action'],
                    data_dict['reward'],
                    data_dict['state_new'],
                    data_dict['not_done']):

            action_new = target_agent.act(state_new)
            # add noise to action_new
            action_new = action_new + tf.clip_by_value(
                tf.random.normal(action_new.shape, 0., policy_noise),
                -policy_noise_clip, policy_noise_clip)
            # clip action_new to action space
            action_new = tf.clip_by_value(
                action_new, manager.env_instance.action_space.low,
                manager.env_instance.action_space.high)

            # calculate target with double-Q-learning
            state_action_new = tf.concat([state_new, action_new], axis=-1)
            q_values0 = target_agent.model.critic0(state_action_new)
            q_values1 = target_agent.model.critic1(state_action_new)
            q_values = tf.concat([q_values0, q_values1], axis=-1)
            q_targets = tf.squeeze(tf.reduce_min(q_values, axis=-1))
            critic_target = reward + gamma * not_done * q_targets

            state_action = tf.concat([state, action], axis=-1)

            # update critic 0
            with tf.GradientTape() as tape:
                q_output = agent.model.critic0(state_action)
                loss = tf.keras.losses.MSE(tf.squeeze(critic_target),
                                           tf.squeeze(q_output))

            total_loss += loss
            gradients = tape.gradient(loss,
                                      agent.model.critic0.trainable_variables)
            optimizer.apply_gradients(
                zip(gradients, agent.model.critic0.trainable_variables))

            # update critic 1
            with tf.GradientTape() as tape:
                q_output = agent.model.critic1(state_action)
                loss = tf.keras.losses.MSE(tf.squeeze(critic_target),
                                           tf.squeeze(q_output))

            total_loss += loss
            gradients = tape.gradient(loss,
                                      agent.model.critic1.trainable_variables)
            optimizer.apply_gradients(
                zip(gradients, agent.model.critic1.trainable_variables))

            # update actor with delayed policy update
            if e % policy_delay == 0:
                with tf.GradientTape() as tape:
                    actor_output = agent.model.actor(state)
                    action = reparam_action(actor_output,
                                            agent.model.action_dimension,
                                            agent.model.min_action,
                                            agent.model.max_action)
                    state_action = tf.concat([state, action], axis=-1)
                    q_val = agent.model.critic0(state_action)
                    actor_loss = -tf.reduce_mean(q_val)

                total_loss += actor_loss
                actor_gradients = tape.gradient(
                    actor_loss, agent.model.actor.trainable_variables)
                optimizer.apply_gradients(
                    zip(actor_gradients,
                        agent.model.actor.trainable_variables))

            # Update agent
            manager.set_agent(agent.get_weights())
            agent = manager.get_agent()

            if e % policy_delay == 0:
                # Polyak averaging
                new_weights = list(rho * np.array(target_agent.get_weights()) +
                                   (1. - rho) * np.array(agent.get_weights()))
                target_agent.set_weights(new_weights)

        reward = manager.test(test_steps, evaluation_measure="reward")
        manager.update_aggregator(loss=total_loss, reward=reward)
        print(
            f"epoch ::: {e}  loss ::: {total_loss}   avg reward ::: {np.mean(reward)}"
        )

        if e % saving_after == 0:
            manager.save_model(saving_path, e)

        # needed time and remaining time estimation
        current_t = time.time()
        time_needed = (current_t - last_t) / 60.
        time_remaining = (current_t - timer) / 60. / (e + 1) * (epochs -
                                                                (e + 1))
        print(
            'Finished epoch %d of %d. Needed %1.f min for this epoch. Estimated time remaining: %.1f min'
            % (e + 1, epochs, time_needed, time_remaining))
        last_t = current_t

    manager.load_model(saving_path)
    print("done")
    print("testing optimized agent")
    manager.test(test_steps, test_episodes=10, render=True)

    ray.shutdown()
Esempio n. 9
0
    alpha = 0.1
    gamma = 0.95

    optim_keys = ["state", "action", "reward", "state_new", "not_done"]

    # initialize buffer
    manager.initilize_buffer(buffer_size, optim_keys)

    # initialize progress aggregator
    manager.initialize_aggregator(path=saving_path,
                                  saving_after=5,
                                  aggregator_keys=["time_steps"])

    print("Testing before training... ")
    manager.test(max_steps=10, test_episodes=3, render=False, do_print=True)

    # get initial agent
    agent = manager.get_agent()

    for e in range(epochs):

        # experience replay
        print("Collecting experience...")
        data = manager.get_data(total_steps=1000)
        manager.store_in_buffer(data)

        # sample data to optimize on from buffer
        sample_dict = manager.sample(sample_size)

        print("Optimizing...")
    training = True

    optim_keys = [
        'state', 'action', 'reward', 'state_new', 'not_done', 'value_estimate'
    ]

    # initialize aggregator
    aggregator_keys = ['actor_loss', 'time_steps', 'reward']
    manager.initialize_aggregator(path=saving_path,
                                  saving_after=10,
                                  aggregator_keys=aggregator_keys)

    # test before training
    print('Test before training:')
    manager.test(test_steps,
                 render=False,
                 do_print=True,
                 evaluation_measure="time_and_reward")

    # get initial agent
    agent = manager.get_agent()

    # initialize the optimizer
    adam = tf.keras.optimizers.Adam(learning_rate=0.0001)

    # initialize mse loss for training critic
    mse = tf.keras.losses.MeanSquaredError()

    if training:
        # main trainig loop
        for e in range(epochs):
            print("training epoch: ", e)
Esempio n. 11
0
    optim_keys = ["state", "action", "reward", "state_new", "not_done"]

    # initialize buffer
    manager.initilize_buffer(buffer_size, optim_keys)

    # initilize progress aggregator
    manager.initialize_aggregator(path=saving_path,
                                  saving_after=5,
                                  aggregator_keys=["loss", "time_steps"])

    # initial testing:
    print("test before training: ")

    manager.test(test_steps,
                 test_episodes=10,
                 do_print=True,
                 render=True,
                 evaluation_measure="time_and_reward")

    # get initial agent
    agent = manager.get_agent()

    for e in range(epochs):

        # training core

        # experience replay off (-> on policy)
        print("collecting experience..")
        data = manager.get_data()
        manager.store_in_buffer(data)
        # sample data to optimize on from buffer
Esempio n. 12
0
            # use samples from buffer to compute q_target and fit model
            q_target = sample_dict["reward"] + GAMMA * agent.max_q(
                sample_dict["state_new"])
            sample_dict["q_target"] = q_target
            agent.model.train(sample_dict, optim_batch_size)

            # Get last lost
            loss = agent.model.history.history['loss']

            # Get optimized weights and update agent
            new_weights = agent.model.get_weights()
            manager.set_agent(new_weights)
            agent = manager.get_agent()

            # update aggregator
            time_steps = manager.test(test_steps)
            manager.update_aggregator(loss=loss, time_steps=time_steps)
            print(
                f"epoch ::: {e}  loss ::: {np.mean([np.mean(l) for l in loss])}   avg env steps ::: {np.mean(time_steps)}"
            )

            # update epsilon
            new_epsilon = EPSILONSTART * (1 - EPSILONDECAYRATE)**(
                (e - epsilon_decay_started_at_e) + 1)
            if (new_epsilon < EPSILONMIN):
                new_epsilon = EPSILONMIN
            print("Updating epsilon to " + str(new_epsilon))
            manager.set_epsilon(epsilon=new_epsilon)

            if e % saving_after == 0:
                manager.save_model(saving_path, e)
Esempio n. 13
0
    saving_after = 5
    test_steps = 1000

    optim_keys = ["state", "action", "reward", "state_new", "not_done"]

    manager.initilize_buffer(buffer_size, optim_keys)

    manager.initialize_aggregator(path=saving_path,
                                  saving_after=5,
                                  aggregator_keys=["loss", "time_steps"])

    print("test before training: ")
    manager.test(
        max_steps=12,  #100
        test_episodes=1,  #10,
        render=True,
        do_print=True,
        evaluation_measure="time_and_reward",
    )

    agent = manager.get_agent()

    epochs = 20

    for e in range(epochs):
        print("collecting experience..")
        data = manager.get_data()
        manager.store_in_buffer(data)
        sample_dict = manager.sample(sample_size)
        print(f"collected data for: {sample_dict.keys()}")
        print("optimizing...")
Esempio n. 14
0
    saving_path = Path(os.getcwd() + SAVING_DIRECTORY)
    saving_path.mkdir(parents=True, exist_ok=True)
    saving_path_model = Path(os.getcwd() + SAVING_DIRECTORY + '/model')
    saving_path_model.mkdir(parents=True, exist_ok=True)

    # initialize manager
    optim_keys = ['state', 'action', 'reward', 'state_new', 'not_done']
    manager.initilize_buffer(BUFFER_SIZE, optim_keys)
    aggregator_keys=['loss', 'time_steps', 'reward']
    manager.initialize_aggregator(saving_path, 5, aggregator_keys)

    # initialize the optimizers
    optimizer = Adam(learning_rate=LEARNING_RATE)

    print('# =============== INITIAL TESTING =============== #')
    manager.test(MAX_TEST_STEPS, 5, evaluation_measure='time_and_reward', do_print=True, render=True)

    # get the initial agent
    agent = manager.get_agent()

    print('# =============== START TRAINING ================ #')
    for e in range(1, EPOCHS+1):
        print(f'# ============== EPOCH {e}/{EPOCHS} ============== #')
        print('# ============= collecting samples ============== #')
        # collect experience and save it to ERP buffer
        data = manager.get_data(do_print=False)
        manager.store_in_buffer(data)

        # get some samples from the ERP buffer and create a dataset
        sample_dict = manager.sample(sample_size=SAMPLE_SIZE)
        data_dict = dict_to_dict_of_datasets(sample_dict, batch_size=BATCH_SIZE)