Esempio n. 1
0
    def init_belief(self):  #remember later to change it to override method
        self.obj = Reason()
        time = [
            '(currenttime=morning)', '(currenttime=afternoon)',
            '(currenttime=evening)'
        ]
        location = ['(atlocation=classroom)', '(atlocation=library)']
        #lstm = ['(classifier=zero)','(classifier=one)']
        decision = ['interested', 'not_interested']

        time_rand = random.choice(time)
        loc_rand = random.choice(location)
        #lstm_rand = random.choice(lstm)
        lstm_rand = self.lstm()

        int_prob = float(
            self.obj.query('reason.plog', self.decision, time_rand, lstm_rand,
                           loc_rand))

        self.obj.delete('reason.plog')
        print int_prob

        init_belief = [1.0 - int_prob, int_prob, 1.0 - int_prob, int_prob, 0]
        b = np.zeros(len(init_belief))
        for i in range(len(init_belief)):
            b[i] = init_belief[i] / sum(init_belief)

        print b
        return b
Esempio n. 2
0
def update_site(site_name, metric, form, original_metric_file, metric_file,
                metric_reasons_file, metric_log_file, metric_groups,
                metric_states, metric_adfs_groups):
    """Function called after form submit in the main page.
	1. Removing site from sites' list
	2. Removing old reason
	3. Adding updated site to sites' list
	4. Adding new reason to reasons' list
	5. Writintg new event in log
	"""
    metric_name = Sites(metric_file, original_metric_file)
    user = User(adfs_login, metric_name.sites, metric_groups, adfs_groups,
                metric_adfs_groups, metric)
    reasons = Reason(metric_reasons_file)
    if site_name in user.managed_sites:
        for site in metric_name.sites:
            if site[1] == site_name and site[2] == form.getvalue(
                    "old-status") and form.getvalue(
                        "new-status") in metric_states:
                metric_name.sites.remove(site)
                #color = find_color(metric, form.getvalue('new-status'))
                #updated_site = [
                #datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                #site_name,
                #form.getvalue("new-status"),
                #color,
                #form.getvalue("url")
                #]
                for site in reasons.sites:
                    if site[0] == site_name:
                        reasons.sites.remove(site)
                if form.getvalue('new-status') != "no_override":
                    color = find_color(metric, form.getvalue('new-status'))
                    updated_site = [
                        datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                        site_name,
                        form.getvalue("new-status"), color,
                        form.getvalue("url")
                    ]
                    metric_name.sites.append(updated_site)
                    reasons.sites.append([
                        site_name,
                        re.sub('[\s+]', ' ', form.getvalue("reason"))
                    ])
                reasons.write_changes(reasons.sites)
                metric_name.write_changes(metric_name.sites)
                log = Log(metric_log_file)
                new_log = [
                    datetime.now().strftime("%Y-%m-%d %H:%M:%S"), adfs_login,
                    site_name,
                    form.getvalue('new-status'),
                    form.getvalue('reason')
                ]
                log.write_changes(new_log)
                url = "https://cmssst.web.cern.ch/cmssst/man_override/cgi/manualOverride.py/%s" % metric
                print "Status: 302 Moved"
                print "Location: %s" % url
                print
Esempio n. 3
0
    def __init__(self, pomdpfile='program.pomdp'):

        self.time = ['morning', 'afternoon', 'evening']
        self.location = ['classroom', 'library']
        self.identity = ['student', 'professor', 'visitor']
        self.intention = ['interested', 'not_interested']
        self.reason = Reason('reason0.plog')
        self.model = Model(filename='program.pomdp', parsing_print_flag=False)
        self.policy = Policy(5, 4, output='program.policy')
        self.instance = []
        self.results = {}
        self.learning = Learning('./', 'interposx.csv', 'interposy.csv')
        self.trajectory_label = 0
def update_site(site_name, metric, form, original_metric_file, metric_file, metric_reasons_file, metric_log_file, metric_groups, metric_states, metric_adfs_groups):
	"""Function called after form submit in the main page.
	1. Removing site from sites' list
	2. Removing old reason
	3. Adding updated site to sites' list
	4. Adding new reason to reasons' list
	5. Writintg new event in log
	"""
        metric_name = Sites(metric_file, original_metric_file)
        user = User(adfs_login, metric_name.sites, metric_groups, adfs_groups, metric_adfs_groups, metric)
        reasons = Reason(metric_reasons_file) 
	if site_name in user.managed_sites:
		for site in metric_name.sites:
			if site[1] == site_name and site[2] == form.getvalue("old-status") and form.getvalue("new-status") in metric_states:
				metric_name.sites.remove(site)
				#color = find_color(metric, form.getvalue('new-status'))
				#updated_site = [
					#datetime.now().strftime("%Y-%m-%d %H:%M:%S"), 
					#site_name, 
					#form.getvalue("new-status"), 
					#color, 
					#form.getvalue("url")
					#]
				for site in reasons.sites:
					if site[0] == site_name:
						reasons.sites.remove(site)
				if form.getvalue('new-status') != "no_override":
					color = find_color(metric, form.getvalue('new-status'))
                               		updated_site = [
						datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
						site_name,
						form.getvalue("new-status"),
						color,
						form.getvalue("url")
						]
					metric_name.sites.append(updated_site)
					reasons.sites.append([site_name, re.sub('[\s+]', ' ', form.getvalue("reason"))])
				reasons.write_changes(reasons.sites)
				metric_name.write_changes(metric_name.sites)
				log = Log(metric_log_file)
				new_log = [datetime.now().strftime("%Y-%m-%d %H:%M:%S"), adfs_login, site_name, form.getvalue('new-status'), form.getvalue('reason')]
				log.write_changes(new_log)
				url = "https://cmssst.web.cern.ch/cmssst/man_override/cgi/manualOverride.py/%s" %metric
				print "Status: 302 Moved"
				print "Location: %s" % url
				print 
Esempio n. 5
0
    def init_pred(self):  #remember later to change it to override method
        self.obj = Reason()
        time = ['(currenttime=rush)', '(currenttime=break)']
        location = ['(atlocation=at_entrance)', '(atlocation=at_exit)']
        lstm = ['(classifier=zero)', '(classifier=one)']
        decision = ['interested', 'not_interested']

        time_rand = random.choice(time)
        loc_rand = random.choice(location)
        lstm_rand = random.choice(lstm)

        int_prob = float(
            self.obj.query('reason.plog', self.decision, time_rand, lstm_rand,
                           loc_rand))

        self.obj.delete('reason.plog')
        print int_prob

        print int_prob
        return int_prob
def index(metric, original_metric_file, metric_file, metric_reasons_file, metric_groups, metric_adfs_groups):
	"""Function generates main page.
	For example - manualOverride.py/lifestatus
	"""
	template = env.get_template('%s.html' % metric)
	metric_name = Sites(metric_file, original_metric_file)
	user = User(adfs_login, metric_name.sites, metric_groups, adfs_groups, metric_adfs_groups, metric)
	reasons = Reason(metric_reasons_file)	
	metric_name.sites = sorted(metric_name.sites, key = itemgetter(1))
	for site in metric_name.sites:
		for item in reasons.sites:
			if site[1] == item[0]:
				site.append(item[1])
	print template.render(sites = metric_name.sites, adfs_login = adfs_login, user_info = user.user_info, metricName = metric)	
Esempio n. 7
0
class Corrp():
    def __init__(self):
        #self.obj=Reason()

        self.obj = None

        self.decision = None
        self.time = None
        self.location = None
        self.suplearn = None

    def init_pred(self):  #remember later to change it to override method
        self.obj = Reason()
        time = ['(currenttime=rush)', '(currenttime=break)']
        location = ['(atlocation=at_entrance)', '(atlocation=at_exit)']
        lstm = ['(classifier=zero)', '(classifier=one)']
        decision = ['interested', 'not_interested']

        time_rand = random.choice(time)
        loc_rand = random.choice(location)
        lstm_rand = random.choice(lstm)

        int_prob = float(
            self.obj.query('reason.plog', self.decision, time_rand, lstm_rand,
                           loc_rand))

        self.obj.delete('reason.plog')
        print int_prob

        print int_prob
        return int_prob

    def init_state(self):

        self.decision = random.choice(['interested', 'not_interested'])
        print 'the random decision is:', self.decision
        self.time = random.choice(['break', 'rush'])
        print 'The random time is ', self.time
        self.location = random.choice(['at_entrance', 'at_exit'])
        print 'The random location is : ', self.location
        self.lstm()

        print 'The classifier output is: ', self.classifier

        return self.decision

    def get_state_index(self, state):

        return self.model.states.index(state)

    def get_obs_index(self, obs):

        return self.model.observations.index(obs)

    def lstm(self):
        pred = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
        #pred_int = [0.9,1.0]
        #pred_not_int = [0.0,0.1,0.2]
        if random.choice(pred) >= 0.5:
            self.suplearn = 1
            self.classifier = 'one'
        else:
            self.suplearn = 0
            self.classifier = 'zero'

    def run(self):

        init = self.init_state()
        prob = self.init_pred()
        cost = 0
        #print ( 'b shape is,', b.shape )
        #print b

        success = 0
        tp = 0
        tn = 0
        fp = 0
        fn = 0

        if prob > 0.5:
            if 'interested' == init:
                success = 1
                tp = 1
                print 'Trial was successfull'
            elif 'not_interested' == init:
                success = 0
                fp = 1
                print 'Trial was unsuccessful'
        else:
            if 'not_interested' == init:
                tn = 1
                success = 1
                print 'Trial was successful'
            elif 'interested' == init:
                fn = 1

        #print ('finished ')

        return cost, success, tp, tn, fp, fn

    def trial_num(self, num):
        total_success = 0
        total_cost = 0
        total_tp = 0
        total_tn = 0
        total_fp = 0
        total_fn = 0

        for i in range(num):
            random.seed(i)
            c, s, tp, tn, fp, fn = self.run()
            total_cost += c
            total_success += s
            total_tp += tp
            total_tn += tn
            total_fp += fp
            total_fn += fn

        print 'Average total reward is:', total_cost / num
        print 'Average total success is: ', float(total_success) / num
        Precision = float(total_tp) / (total_tp + total_fp)
        print 'Precision is ', Precision
        Recall = float(total_tp) / (total_tp + total_fn)
        print 'Recall is ', Recall
        F1score = 2.0 * Precision * Recall / (Precision + Recall)
        print 'F1 score', F1score
Esempio n. 8
0
class Simulator:
    def __init__(self, pomdpfile='program.pomdp'):

        self.time = ['morning', 'afternoon', 'evening']
        self.location = ['classroom', 'library']
        self.identity = ['student', 'professor', 'visitor']
        self.intention = ['interested', 'not_interested']
        self.reason = Reason('reason0.plog')
        self.model = Model(filename='program.pomdp', parsing_print_flag=False)
        self.policy = Policy(5, 4, output='program.policy')
        self.instance = []
        self.results = {}
        self.learning = Learning('./', 'interposx.csv', 'interposy.csv')
        self.trajectory_label = 0

    def sample(self, alist, distribution):

        return np.random.choice(alist, p=distribution)

    def create_instance(self, i):
        random.seed(i)

        #person = random.choice(self.identity)
        person = 'visitor'
        #print ('\nIdentity (uniform sampling): [student, visitor, professor] : '), person
        #		print ('identity is:'), person
        if person == 'student':
            #place ='classroom'
            place = self.sample(self.location, [0.7, 0.3])
            #time ='evening'
            #time =self.sample(self.time,[0.15,0.15,0.7])
            #intention =self.sample(self.intention,[0.3,0.7])
            #intention = 'not_interested'
        elif person == 'professor':
            place = self.sample(self.location, [0.9, 0.1])
            time = self.sample(self.time, [0.8, 0.1, 0.1])
            intention = self.sample(self.intention, [0.1, 0.9])
        else:
            #place = self.sample(self.location,[0.2,0.8])
            place = 'classroom'
            #time =self.sample(self.time,[0.1,0.7,0.2])
            time = 'afternoon'
            intention = self.sample(self.intention, [0.8, 0.2])
            intention = 'interested'

        self.trajectory_label = self.learning.get_traj(intention)

        print('Sampling time, location and intention for the identity: ' +
              person)

        self.instance.append(person)
        self.instance.append(time)  #1
        self.instance.append(place)  #2
        self.instance.append(intention)
        self.instance.append('trajectory with label ' +
                             str(self.trajectory_label))
        print('Instance: ')
        print(self.instance[0], self.instance[1], self.instance[2],
              self.instance[3], self.instance[4])
        return self.instance

    def observe_fact(self, i):
        random.seed(i)
        #print '\nObservations:'
        time = self.instance[1]
        location = self.instance[2]
        #print ('Observed time: '),time
        #print ('Observed location: '),location
        return time, location

    def init_belief(self, int_prob):

        l = len(self.model.states)
        b = np.zeros(l)

        # initialize the beliefs of the states with index=0 evenly

        int_prob = float(int_prob)
        init_belief = [0, 0, 1.0 - int_prob, int_prob, 0]
        b = np.zeros(len(self.model.states))
        for i in range(len(self.model.states)):
            b[i] = init_belief[i] / sum(init_belief)
        print 'The normalized initial belief would be: '
        print b
        return b

    def get_state_index(self, state):

        return self.model.states.index(state)

    def init_state(self):
        state = random.choice(
            ['not_turned_not_interested', 'not_turned_interested'])
        #print '\nRandomly selected state from [not_forward_not_interested,not_forward_interested] =',state
        s_idx = self.get_state_index(state)
        #print s_idx
        return s_idx, state

    def get_obs_index(self, obs):

        return self.model.observations.index(obs)

    def observe(self, a_idx, intention, pln_obs_acc):

        p = pln_obs_acc
        if self.model.actions[
                a_idx] == 'move_forward' and intention == 'interested':
            #obs='physical'
            obs = self.sample(['pos', 'neg'], [p, 1 - p])
        elif self.model.actions[
                a_idx] == 'move_forward' and intention == 'not_interested':
            obs = obs = self.sample(['pos', 'neg'], [1 - p, p])
        elif self.model.actions[a_idx] == 'greet' and intention == 'interested':
            #obs = 'verbal'
            obs = self.sample(['pos', 'neg'], [p, 1 - p])
        elif self.model.actions[
                a_idx] == 'greet' and intention == 'not_interested':
            obs = self.sample(['pos', 'neg'], [1 - p, p])
        elif self.model.actions[a_idx] == 'turn' and intention == 'interested':
            #obs = 'verbal'
            obs = self.sample(['pos', 'neg'], [p, 1 - p])
        elif self.model.actions[
                a_idx] == 'turn' and intention == 'not_interested':
            obs = self.sample(['pos', 'neg'], [1 - p, p])
        else:
            obs = 'na'
        #l=len(self.model.observations)-1
        #o_idx=randint(0,l)
        o_idx = self.get_obs_index(obs)
        print('random observation is: ', self.model.observations[o_idx])
        return o_idx

    def update(self, a_idx, o_idx, b):
        b = np.dot(b, self.model.trans_mat[a_idx, :])

        b = [
            b[i] * self.model.obs_mat[a_idx, i, o_idx]
            for i in range(len(self.model.states))
        ]

        b = b / sum(b)
        return b

    def run(self, strategy, time, location, r_thresh, l_thresh, pln_obs_acc):
        a_cnt = 0
        success = 0
        tp = 0
        tn = 0
        fp = 0
        fn = 0
        cost = 0
        R = 0

        if strategy == 'corpp':
            #prob = self.reason.query_nolstm(time, location,'reason_nolstm.plog')
            prob = self.reason.query_nolstm(time, location, 'reason0.plog')
            print colored('\nSTRATEGY: ', 'red'), colored(strategy, 'red')
            print '\nOur POMDP Model states are: '
            print self.model.states

            s_idx, temp = self.init_state()
            b = self.init_belief(prob)

            #print ( 'b shape is,', b.shape )
            #print b

            while True:
                a_idx = self.policy.select_action(b)
                a = self.model.actions[a_idx]
                a_cnt = a_cnt + 1
                if a_cnt > 20:
                    print('POLICY IS NOT REPORTING UNDER 20 ACTIONS')
                    sys.exit()
                print('action selected', a)

                o_idx = self.observe(a_idx, self.instance[3], pln_obs_acc)
                #print ('transition matrix shape is', self.model.trans_mat.shape)
                #print self.model.trans_mat[a_idx,:,:]
                #print ('observation matrix shape is', self.model.obs_mat.shape)
                #print self.model.trans_mat[a_idx,:,:]
                #print s_idx
                R = R + self.model.reward_mat[a_idx, s_idx]
                print 'Reward is : ', cost
                #print ('Total reward is,' , cost)
                b = self.update(a_idx, o_idx, b)
                print b

                if 'report' in a:
                    if 'not_interested' in a and 'not_interested' == self.instance[
                            3]:
                        success = 1
                        tn = 1
                        print 'Trial was successfull'
                    elif 'report_interested' in a and 'interested' == self.instance[
                            3]:
                        success = 1
                        tp = 1
                        print 'Trial was successful'
                    elif 'report_interested' in a and 'not_interested' == self.instance[
                            3]:
                        fp = 1
                        print 'Trial was unsuccessful'
                    elif 'not_interested' in a and 'interested' == self.instance[
                            3]:
                        fn = 1

                    print('Finished\n ')

                    break
                cost = cost + self.model.reward_mat[a_idx, s_idx]
                print 'cost is : ', cost

        if strategy == 'planning':
            #prob = self.reason.query_nolstm(time, location,'reason_nolstm.plog')
            print colored('\nSTRATEGY', 'green'), colored(strategy, 'green')
            print '\nOur POMDP Model states are: '
            print self.model.states

            s_idx, temp = self.init_state()
            #init_belief = [0.25, 0.25, 0.25, 0.25, 0]
            #b = np.zeros(len(init_belief))
            b = np.ones(len(self.model.states))
            for i in range(len(self.model.states)):
                b[i] = b[i] / len(self.model.states)
            print 'initial belief', b
            while True:
                a_idx = self.policy.select_action(b)
                a = self.model.actions[a_idx]

                print('action selected', a)

                o_idx = self.observe(a_idx, self.instance[3], pln_obs_acc)
                R = R + self.model.reward_mat[a_idx, s_idx]
                print 'R is : ', cost
                #print ('Total reward is,' , cost)
                b = self.update(a_idx, o_idx, b)
                print b

                if 'report' in a:
                    if 'not_interested' in a and 'not_interested' == self.instance[
                            3]:
                        success = 1
                        tn = 1
                        print 'Trial was successfull'
                    elif 'report_interested' in a and 'interested' == self.instance[
                            3]:
                        success = 1
                        tp = 1
                        print 'Trial was successful'
                    elif 'report_interested' in a and 'not_interested' == self.instance[
                            3]:
                        fp = 1
                        print 'Trial was unsuccessful'
                    elif 'not_interested' in a and 'interested' == self.instance[
                            3]:
                        fn = 1

                    print('Finished\n ')

                    break

                cost = cost + self.model.reward_mat[a_idx, s_idx]
                print 'cost is : ', cost

        if strategy == 'reasoning':
            print colored('\nSTRATEGY is: ',
                          'yellow'), colored(strategy, 'yellow')
            #prob = self.reason.query_nolstm(time, location,'reason_nolstm.plog')			prob = self.reason.query_nolstm(time, location,'reason_nolstm.plog')
            prob = self.reason.query_nolstm(time, location, 'reason0.plog')

            print('P(ineterested)| observed time and location: '), prob

            prob = float(prob)
            if prob >= r_thresh and 'interested' == self.instance[3]:
                success = 1
                print('Greater than threshold =' + str(r_thresh) +
                      ', -> human IS interested')
                print 'Trial was successful'
                tp = 1
            elif prob >= r_thresh and 'not_interested' == self.instance[3]:
                success = 0
                fp = 1
                print('Greater than threshold =' + str(r_thresh) +
                      ', -> human IS interested')
                print 'Trial was unsuccessful'
            elif prob < r_thresh and 'interested' == self.instance[3]:
                success = 0
                print('Less than threshold =' + str(r_thresh) +
                      ', -> human IS NOT interested')
                fn = 1
                print 'Trial was unsuccessful'
            else:
                success = 1
                print('Less than threshold =' + str(r_thresh) +
                      ', -> human IS NOT interested')
                print 'Trial was successful'
                tn = 1

        if strategy == 'learning':

            print colored('\nStrategy is: ', 'blue'), colored(strategy, 'blue')
            res = self.learning.predict()

            if res > l_thresh and self.trajectory_label == 1.0:
                print('CASE I the trajectory shows person is interested')
                success = 1
                tp = 1
            elif res < l_thresh and self.trajectory_label == 0:

                print('CASE II the person is not interested')
                success = 1
                tn = 1
            elif res > l_thresh and self.trajectory_label == 0:
                sucess = 0
                fp = 1
                print('CASE III the trajectory shows person is interested')
            elif res < l_thresh and self.trajectory_label == 1.0:
                fn = 1
                success = 0
                ('CASE IV the person is not interested')

        if strategy == 'lstm-corpp':
            print colored('\nSTRATEGY is: ',
                          'magenta'), colored(strategy, 'magenta')
            res = self.learning.predict()
            #do not change 0.2 below
            if res > l_thresh:
                #prob = self.reason.query(time, location,'one','reason.plog')
                prob = self.reason.query(time, location, 'one', 'reason0.plog')
            else:
                prob = self.reason.query(time, location, 'zero',
                                         'reason0.plog')
            print '\nOur POMDP Model states are: '
            print self.model.states

            s_idx, temp = self.init_state()
            b = self.init_belief(prob)

            while True:
                a_idx = self.policy.select_action(b)
                a = self.model.actions[a_idx]

                print('action selected', a)

                o_idx = self.observe(a_idx, self.instance[3], pln_obs_acc)
                R = R + self.model.reward_mat[a_idx, s_idx]
                print 'R is : ', cost
                #print ('Total reward is,' , cost)
                b = self.update(a_idx, o_idx, b)
                print b

                if 'report' in a:
                    if 'not_interested' in a and 'not_interested' == self.instance[
                            3]:
                        success = 1
                        tn = 1
                        print 'Trial was successfull'
                    elif 'report_interested' in a and 'interested' == self.instance[
                            3]:
                        success = 1
                        tp = 1
                        print 'Trial was successful'
                    elif 'report_interested' in a and 'not_interested' == self.instance[
                            3]:
                        fp = 1
                        print 'Trial was unsuccessful'
                    elif 'not_interested' in a and 'interested' == self.instance[
                            3]:
                        fn = 1

                    print('Finished\n ')

                    break
                cost = cost + self.model.reward_mat[a_idx, s_idx]
                print 'cost is : ', cost

        if strategy == 'lreasoning':
            print colored('\nStrategy is: learning + reasoning ', 'cyan')
            res = self.learning.predict()
            if res > l_thresh:
                prob = self.reason.query(time, location, 'one', 'reason0.plog')
            else:
                prob = self.reason.query(time, location, 'zero',
                                         'reason0.plog')
            lr_thresh = r_thresh
            prob = float(prob)
            if prob >= r_thresh and 'interested' == self.instance[3]:
                success = 1
                print('Greater than threshold =' + str(r_thresh) +
                      ', -> human IS interested')
                print 'Trial was successful'
                tp = 1
            elif prob >= r_thresh and 'not_interested' == self.instance[3]:
                success = 0
                fp = 1
                print('Greater than threshold =' + str(r_thresh) +
                      ', -> human IS interested')
                print 'Trial was unsuccessful'
            elif prob < r_thresh and 'interested' == self.instance[3]:
                success = 0
                print('Less than threshold =' + str(r_thresh) +
                      ', -> human IS NOT interested')
                fn = 1
                print 'Trial was unsuccessful'
            else:
                success = 1
                print('Less than threshold =' + str(r_thresh) +
                      ', -> human IS NOT interested')
                print 'Trial was successful'
                tn = 1

        return cost, success, tp, tn, fp, fn, R

    def trial_num(self, num, strategylist, r_thresh, l_thresh, pln_obs_acc):
        df = pd.DataFrame()

        total_success = {}
        total_cost = {}
        total_tp = {}
        total_tn = {}
        total_fp = {}
        total_fn = {}
        prec = {}
        recall = {}
        SDcost = {}
        reward = {}
        SDreward = {}

        for strategy in strategylist:
            total_success[strategy] = 0
            total_cost[strategy] = 0
            total_tp[strategy] = 0
            total_tn[strategy] = 0
            total_fp[strategy] = 0
            total_fn[strategy] = 0
            prec[strategy] = 0
            recall[strategy] = 0
            reward[strategy] = 0
            SDreward[strategy] = []
            SDcost[strategy] = []
        for i in range(num):
            print colored('######TRIAL:',
                          'blue'), colored(i,
                                           'red'), colored('#######', 'blue')

            del self.instance[:]
            self.create_instance(i)
            time, location = self.observe_fact(i)

            for strategy in strategylist:

                c, s, tp, tn, fp, fn, R = self.run(strategy, time, location,
                                                   r_thresh, l_thresh,
                                                   pln_obs_acc)

                reward[strategy] += R
                total_cost[strategy] += c
                total_success[strategy] += s
                total_tp[strategy] += tp
                total_tn[strategy] += tn
                total_fp[strategy] += fp
                total_fn[strategy] += fn
                SDcost[strategy].append(c)
                SDreward[strategy].append(R)
                #		print ('total_tp:'), total_tp
                #		print ('total_tn:'), total_tn
                #		print ('total_fp:'), total_fp
                #		print ('total_fn:'), total_fn
                try:
                    df.at[strategy, 'Reward'] = float(reward[strategy]) / num
                    df.at[strategy,
                          'SDCost'] = statistics.stdev(SDcost[strategy])
                    df.at[strategy,
                          'SDreward'] = statistics.stdev(SDreward[strategy])
                    df.at[strategy, 'Cost'] = float(total_cost[strategy]) / num
                    df.at[strategy,
                          'Success'] = float(total_success[strategy]) / num
                    prec[strategy] = round(
                        float(total_tp[strategy]) /
                        (total_tp[strategy] + total_fp[strategy]), 2)
                    recall[strategy] = round(
                        float(total_tp[strategy]) /
                        (total_tp[strategy] + total_fn[strategy]), 2)
                    df.at[strategy, 'Precision'] = prec[strategy]
                    df.at[strategy, 'Recall'] = recall[strategy]
                    df.at[strategy, 'F1 Score'] = round(
                        2 * prec[strategy] * recall[strategy] /
                        (prec[strategy] + recall[strategy]), 2)

                except:
                    print 'Can not divide by zero'
                    df.at[strategy, 'Precision'] = 0
                    df.at[strategy, 'Recall'] = 0
                    df.at[strategy, 'F1 Score'] = 0

        #print 'fp',total_fp['learning']
        #print 'fn',total_fn['learning']

        #self.instance =[]
        return df

    def print_results(self, df):
        print '\nWRAP UP OF RESULTS:'
        print df
Esempio n. 9
0
class Corrp():
    def __init__(self, pomdpfile='program.pomdp'):
        #self.obj=Reason()

        self.obj = None
        self.model = Model(filename='program.pomdp', parsing_print_flag=False)
        self.policy = Policy(5, 4, output='program.policy')
        print self.model.states
        self.decision = None
        self.time = None
        self.location = None
        self.suplearn = None

    def init_belief(self):  #remember later to change it to override method
        self.obj = Reason()
        time = [
            '(currenttime=morning)', '(currenttime=afternoon)',
            '(currenttime=evening)'
        ]
        location = ['(atlocation=classroom)', '(atlocation=library)']
        #lstm = ['(classifier=zero)','(classifier=one)']
        decision = ['interested', 'not_interested']

        time_rand = random.choice(time)
        loc_rand = random.choice(location)
        #lstm_rand = random.choice(lstm)
        lstm_rand = self.lstm()

        int_prob = float(
            self.obj.query('reason.plog', self.decision, time_rand, lstm_rand,
                           loc_rand))

        self.obj.delete('reason.plog')
        print int_prob

        init_belief = [1.0 - int_prob, int_prob, 1.0 - int_prob, int_prob, 0]
        b = np.zeros(len(init_belief))
        for i in range(len(init_belief)):
            b[i] = init_belief[i] / sum(init_belief)

        print b
        return b

    def init_state(self):
        #state=random.choice(['not_forward_not_interested','not_forward_interested'])
        self.decision = random.choice(['interested', 'not_interested'])
        print 'the random decision is:', self.decision
        self.time = random.choice(['morning', 'afternoon', 'evening'])
        print 'The random time is ', self.time
        self.location = random.choice(['library', 'classroom'])
        print 'The random location is : ', self.location
        self.lstm()

        print 'The classifier output is: ', self.classifier

        if self.decision == 'interested':
            state = random.choice(
                ['not_forward_interested', 'forward_interested'])
        else:
            state = random.choice(
                ['not_forward_not_interested', 'forward_not_interested'])
        print state
        s_idx = self.get_state_index(state)
        print s_idx
        return s_idx, state

    def get_state_index(self, state):

        return self.model.states.index(state)

    def get_obs_index(self, obs):

        return self.model.observations.index(obs)

    def random_observe(self, a_idx):
        if self.model.actions[a_idx] == 'move_forward':
            obs = random.choice(['physical', 'no_physical'])
        elif self.model.actions[a_idx] == 'greet':
            obs = random.choice(['verbal', 'no_verbal'])
        else:
            obs = 'na'
        #l=len(self.model.observations)-1
        #o_idx=randint(0,l)
        o_idx = self.get_obs_index(obs)
        print('random observation is: ', self.model.observations[o_idx])
        return o_idx

    def observe_logical(self, a_idx):
        if self.model.actions[
                a_idx] == 'move_forward' and self.decision == 'interested':
            obs = 'physical'
        elif self.model.actions[
                a_idx] == 'move_forward' and self.decision == 'not_interested':
            obs = 'no_physical'
        elif self.model.actions[
                a_idx] == 'greet' and self.decision == 'interested':
            obs = 'verbal'
        elif self.model.actions[
                a_idx] == 'greet' and self.decision == 'not_interested':
            obs = 'no_verbal'
        else:
            obs = 'na'
        #l=len(self.model.observations)-1
        #o_idx=randint(0,l)
        o_idx = self.get_obs_index(obs)
        print('random observation is: ', self.model.observations[o_idx])
        return o_idx

    #def update(self, a_idx,o_idx,b ):
    #	temp = np.matmul(self.model.trans_mat[0,:,:],self.model.obs_mat[0,:,:])
    #	temp = np.matmul(b,temp)
    #	b = temp/np.sum(temp)
    #	return b

    def update(self, a_idx, o_idx, b):
        b = np.dot(b, self.model.trans_mat[a_idx, :])

        b = [
            b[i] * self.model.obs_mat[a_idx, i, o_idx]
            for i in range(len(self.model.states))
        ]

        b = b / sum(b)
        return b

    def lstm(self):
        predone = [1, 1, 1, 1, 1, 1, 1, 0, 0, 0]
        prezero = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1]
        if self.decision == 'interested':
            if random.choice(predone) == 1:
                self.classifier = 'one'
                return '(classifier=one)'
            else:
                self.classifier = 'zero'
                return '(classifier=zero)'
        else:
            if random.choice(predone) == 1:
                self.classifier = 'one'
                return '(classifier=one)'
            else:
                self.classifier = 'zero'
                return '(classifier=zero)'
            #self.suplearn = 0
            #self.classifier = 'zero'
    def run(self):

        s_idx, temp = self.init_state()
        b = self.init_belief()
        cost = 0
        #print ( 'b shape is,', b.shape )
        #print b

        while True:
            a_idx = self.policy.select_action(b)
            a = self.model.actions[a_idx]

            print('action selected', a)

            o_idx = self.random_observe(a_idx)
            #o_idx= self.observe_logical(a_idx)
            #print ('transition matrix shape is', self.model.trans_mat.shape)
            #print self.model.trans_mat[a_idx,:,:]
            #print ('observation matrix shape is', self.model.obs_mat.shape)
            #print self.model.trans_mat[a_idx,:,:]
            print s_idx
            cost = cost + self.model.reward_mat[a_idx, s_idx]
            print('Total reward is,', cost)
            b = self.update(a_idx, o_idx, b)
            print b
            success = 0
            tp = 0
            tn = 0
            fp = 0
            fn = 0

            if 'report' in a:
                if 'not_interested' in a and 'not_interested' in temp:
                    success = 1
                    tn = 1
                    print 'Trial was successfull'
                elif 'report_interested' in a and 'forward_interested' in temp:
                    success = 1
                    tp = 1
                    print 'Trial was successful'
                elif 'report_interested' in a and 'forward_not_interested' in temp:
                    fp = 1
                    print 'Trial was unsuccessful'
                elif 'not_interested' in a and 'forward_interested' in temp:
                    fn = 1

                print('finished ')
                break

        return cost, success, tp, tn, fp, fn

    def trial_num(self, num):
        total_success = 0
        total_cost = 0
        total_tp = 0
        total_tn = 0
        total_fp = 0
        total_fn = 0

        for i in range(num):
            random.seed(i)
            c, s, tp, tn, fp, fn = self.run()
            total_cost += c
            total_success += s
            total_tp += tp
            total_tn += tn
            total_fp += fp
            total_fn += fn

        print 'Average total reward is:', total_cost / num
        print 'Average total success is: ', float(total_success) / num
        Precision = float(total_tp) / (total_tp + total_fp)
        print 'Precision is ', Precision
        Recall = float(total_tp) / (total_tp + total_fn)
        print 'Recall is ', Recall
        F1score = 2.0 * Precision * Recall / (Precision + Recall)
        print 'F1 score', F1score