Esempio n. 1
0
    def to_items(self,
                 taxonomy: Taxonomy,
                 items: List[Tuple[TaxId, List]],
                 sample_indexes: List[int] = None) -> None:
        """
        Recursive method to populate a list (used to feed a DataFrame).

        Args:
            taxonomy: Taxonomy object.
            items: Input/Output list to be populated.
            sample_indexes: Indexes of the samples of interest (for cC)

        Returns: None

        """
        for tid in self:
            list_row: List = []
            if sample_indexes:
                for i in sample_indexes:
                    list_row.append(self[tid].counts[i])
            else:
                for i in range(len(self.samples)):
                    list_row.extend([
                        self[tid].accs[i], self[tid].counts[i],
                        self[tid].score[i]
                    ])
                list_row.extend([
                    taxonomy.get_rank(tid).name.lower(),
                    taxonomy.get_name(tid)
                ])
            items.append((tid, list_row))
            if self[tid]:
                self[tid].to_items(taxonomy=taxonomy,
                                   items=items,
                                   sample_indexes=sample_indexes)
Esempio n. 2
0
    def grow(
        self,
        taxonomy: Taxonomy,
        counts: Counter[TaxId] = None,
        scores: Union[Dict[TaxId, Score], SharedCounter] = None,
        ancestors: Set[TaxId] = None,
        look_ancestors: bool = True,
        taxid: TaxId = ROOT,
        _path: List[TaxId] = None,
    ) -> None:
        """
        Recursively build a taxonomy tree.

        Args:
            taxonomy: Taxonomy object.
            counts: counter for taxids with their abundances.
            scores: optional dict with the score for each taxid.
            ancestors: optional set of ancestors.
            look_ancestors: flag to (dis/en)able looking for ancestors
            taxid: It's ROOT by default for the first/base method call
            _path: list used by the recursive algorithm to avoid loops

        Returns: None

        """
        # Checks and initializations in the first call to the function
        if not _path:
            _path = []
            if not counts:
                counts = col.Counter({ROOT: 1})
            if not scores:
                scores = {}
            if look_ancestors and not ancestors:
                ancestors, _ = taxonomy.get_ancestors(counts.keys())

        # Go ahead if there is an ancestor or not repeated taxid (like root)
        if (not look_ancestors or taxid in ancestors) and taxid not in _path:
            self[taxid] = TaxTree(counts=counts.get(taxid, 0),
                                  score=scores.get(taxid, NO_SCORE),
                                  rank=taxonomy.get_rank(taxid))
            if taxid in taxonomy.children:  # taxid has children
                for child in taxonomy.children[taxid]:
                    self[taxid].grow(taxonomy=taxonomy,
                                     counts=counts,
                                     scores=scores,
                                     ancestors=ancestors,
                                     look_ancestors=look_ancestors,
                                     taxid=child,
                                     _path=_path + [taxid])
Esempio n. 3
0
    def toxml(
        self,
        taxonomy: Taxonomy,
        krona: KronaTree,
        node: Elm = None,
    ) -> None:
        """
        Recursive method to generate XML.

        Args:
            taxonomy: Taxonomy object.
            krona: Input/Output KronaTree object to be populated.
            node: Base node (None to use the root of krona argument).

        Returns: None

        """
        for tid in self:
            if node is None:
                node = krona.getroot()
            num_samples = len(self.samples)
            new_node: Elm = krona.node(
                parent=node,
                name=taxonomy.get_name(tid),
                values={
                    COUNT: {
                        self.samples[i]: str(self[tid].accs[i])
                        for i in range(num_samples)
                    },
                    UNASSIGNED: {
                        self.samples[i]: str(self[tid].counts[i])
                        for i in range(num_samples)
                    },
                    TID: str(tid),
                    RANK: taxonomy.get_rank(tid).name.lower(),
                    SCORE: {
                        self.samples[i]:
                        (f'{self[tid].score[i]:.1f}'
                         if self[tid].score[i] != NO_SCORE else '0')
                        for i in range(num_samples)
                    },
                })
            if self[tid]:
                self[tid].toxml(taxonomy=taxonomy, krona=krona, node=new_node)
Esempio n. 4
0
    def grow(self,
             taxonomy: Taxonomy,
             abundances: Dict[Sample, Counter[TaxId]] = None,
             accs: Dict[Sample, Counter[TaxId]] = None,
             scores: Dict[Sample, Dict[TaxId, Score]] = None,
             taxid: TaxId = ROOT,
             _path: List[TaxId] = None) -> None:
        """
        Recursively build a taxonomy tree.

        Args:
            taxonomy: Taxonomy object.
            abundances: Dict of counters with taxids' abundance.
            accs: Dict of counters with taxids' accumulated abundance.
            scores: Dict of dicts with taxids' score.
            taxid: It's ROOT by default for the first/base method call
            _path: list used by the recursive algorithm to avoid loops

        Returns: None

        """
        # Create dummy variables in case they are None in the 1st call
        if not _path:
            _path = []
            if not abundances:
                abundances = {
                    sample: col.Counter({ROOT: 1})
                    for sample in self.samples
                }
            if not accs:
                accs = {
                    sample: col.Counter({ROOT: 1})
                    for sample in self.samples
                }
            if not scores:
                scores = {sample: {} for sample in self.samples}
        if taxid not in _path:  # Avoid loops for repeated taxid (like root)
            multi_count: Dict[Sample, int] = {
                sample: abundances[sample].get(taxid, 0)
                for sample in self.samples
            }
            multi_acc: Dict[Sample, int] = {
                sample: accs[sample].get(taxid, 0)
                for sample in self.samples
            }
            multi_score: Dict[Sample, Score] = {
                sample: scores[sample].get(taxid, NO_SCORE)
                for sample in self.samples
            }
            if any(multi_acc.values()):  # Check for any populated branch
                self[taxid] = MultiTree(samples=self.samples,
                                        counts=multi_count,
                                        accs=multi_acc,
                                        scores=multi_score,
                                        rank=taxonomy.get_rank(taxid))
                if taxid in taxonomy.children:  # taxid has children
                    for child in taxonomy.children[taxid]:
                        self[taxid].grow(taxonomy=taxonomy,
                                         abundances=abundances,
                                         accs=accs,
                                         scores=scores,
                                         taxid=child,
                                         _path=_path + [taxid])
Esempio n. 5
0
    def toxml(self,
              taxonomy: Taxonomy,
              krona: KronaTree,
              node: Elm = None,
              mindepth: int = 0,
              maxdepth: int = 0,
              include: Union[Tuple, Set[TaxId]] = (),
              exclude: Union[Tuple, Set[TaxId]] = (),
              _in_branch: bool = False) -> None:
        """
        Recursively convert to XML between min and max depth levels.

        Args:
            taxonomy: Taxonomy object.
            krona: Input/Output KronaTree object to be populated.
            node: Base node (None to use the root of krona argument).
            mindepth: 0 gets the taxa from the very beginning depth.
            maxdepth: 0 does not stop the search at any depth level.
            include: contains the root taxid of the subtrees to be
                included. If it is empty (default) all the taxa is
                included (except explicitly excluded).
            exclude: contains the root taxid of the subtrees to be
                excluded
            _in_branch: is like a static variable to tell the
                recursive function that it is in a subtree that is
                a branch of a taxon in the include list.

        Returns: None

        """
        mindepth -= 1
        if maxdepth != 1:
            maxdepth -= 1
            for tid in self:
                in_branch: bool = (
                    (
                        _in_branch or  # called with flag activated? or
                        not include or  # include by default? or
                        (tid in include))  # tid is to be included?
                    and tid not in exclude  # and not in exclude list
                )
                new_node: Elm
                if mindepth <= 0 and in_branch:
                    if node is None:
                        node = krona.getroot()
                    new_node = krona.node(
                        node, taxonomy.get_name(tid), {
                            COUNT: {
                                krona.samples[0]: str(self[tid].acc)
                            },
                            UNASSIGNED: {
                                krona.samples[0]: str(self[tid].counts)
                            },
                            TID: str(tid),
                            RANK: taxonomy.get_rank(tid).name.lower(),
                            SCORE: {
                                krona.samples[0]: str(self[tid].score)
                            }
                        })
                if self[tid]:
                    self[tid].toxml(taxonomy, krona, new_node, mindepth,
                                    maxdepth, include, exclude, in_branch)
Esempio n. 6
0
    def allin1(self,
               taxonomy: Taxonomy,
               counts: Counter[TaxId] = None,
               scores: Union[Dict[TaxId, Score], 'SharedCounter'] = None,
               ancestors: Set[TaxId] = None,
               tid: TaxId = ROOT,
               min_taxa: int = 1,
               min_rank: Rank = None,
               just_min_rank: bool = False,
               include: Union[Tuple, Set[TaxId]] = (),
               exclude: Union[Tuple, Set[TaxId]] = (),
               out: SampleDataByTaxId = None,
               _path: List[TaxId] = None) -> Union[int, None]:
        """
        Recursively build a taxonomy tree.

        Args:
            taxonomy: Taxonomy object.
            counts: counter for taxids with their abundances.
            scores: optional dict with the score for each taxid.
            ancestors: optional set of ancestors.
            tid: It's ROOT by default for the first/base method call
            min_taxa: minimum taxa to avoid pruning/collapsing
                one level to the parent one.
            min_rank: if any, minimum Rank allowed in the TaxTree.
            just_min_rank: If set, just min_rank taxa will be counted.
            include: contains the root taxid of the subtrees to be
                included. If it is empty (default) all the taxa is
                included (except explicitly excluded).
            exclude: root taxid of the subtrees to be excluded
            out: Optional I/O object, at 1st entry should be empty.
            _path: list used by the recursive algorithm to avoid loops

        Returns: Accumulated counts of new node (or None for no node)

        """
        def populate_output(taxid: TaxId, source: TaxTree) -> None:
            """Populate the output structure"""
            nonlocal out
            if out.counts is not None:
                out.counts[taxid] = source[taxid].counts
            if out.ranks is not None:
                out.ranks[taxid] = source[taxid].rank
            if out.scores is not None and source[taxid].score != NO_SCORE:
                out.scores[taxid] = source[taxid].score
            if out.accs is not None:
                out.accs[taxid] = source[taxid].acc

        # Checks and initializations in the first call to the function
        if not _path:
            _path = []
            if not counts:
                counts = col.Counter({ROOT: 1})
            if not scores:
                scores = {}
            if min_rank is None and just_min_rank:
                raise RuntimeError('allin1: just_min_rank without min_rank')
            if not ancestors:
                ancestors, _ = taxonomy.get_ancestors(counts.keys())

        if tid in _path:  # Return if loop for repeated taxid (like root)
            return None

        rank: Rank = taxonomy.get_rank(tid)
        parent_rank: Rank = None
        if min_rank:  # Get parent rank (NO_RANK is not an option)
            if tid == ROOT:
                parent_rank = Rank.ROOT
            else:
                for taxid in reversed(_path):
                    parent_rank = taxonomy.get_rank(taxid)
                    if parent_rank is not Rank.NO_RANK:
                        break
        abun: int = 0
        # For assigning counts, check just_min_rank conditions and,
        #  if include list, check if any include taxon is in _path
        if ((not just_min_rank or rank <= min_rank or parent_rank <= min_rank)
                and
            (not include or any([tid in include for tid in _path + [tid]]))):
            abun = counts.get(tid, 0)
        self[tid] = TaxTree(counts=abun,
                            score=scores.get(tid, NO_SCORE),
                            rank=rank,
                            acc=abun)
        if tid not in taxonomy.children:
            return self[tid].acc

        # Taxid has children (is a branch)
        for chld in taxonomy.children[tid]:

            def update_score_and_acc(chld: TaxId, child_acc: int) -> None:
                """Update score and then accumulated counts of self[tid]"""
                def swmean(cnt1: int, sco1: Score, cnt2: int,
                           sco2: Score) -> Score:
                    """Weighted mean of scores by counts"""
                    if sco1 == NO_SCORE:
                        return sco2
                    elif sco2 == NO_SCORE:
                        return sco1
                    return Score((cnt1 * sco1 + cnt2 * sco2) / (cnt1 + cnt2))

                if self[tid].acc + child_acc:
                    self[tid].score = swmean(self[tid].acc, self[tid].score,
                                             child_acc, self[tid][chld].score)
                self[tid].acc += child_acc

            # If not an ancestor or excluded taxa, do not create child
            if chld not in ancestors or chld in exclude:
                continue  # Don't create child and continue
            child_acc: Union[int, None] = self[tid].allin1(
                taxonomy=taxonomy,
                counts=counts,
                scores=scores,
                ancestors=ancestors,
                tid=chld,
                min_taxa=min_taxa,
                min_rank=min_rank,
                just_min_rank=just_min_rank,
                include=include,
                exclude=exclude,
                out=out,
                _path=_path + [tid])
            if child_acc is None:  # No child created, continue
                continue
            rank_prune: bool = False
            # Set min_rank pruning condition using a robust algorithm
            #   suitable for multiple eukaryotic NO_RANK sublevels
            if (min_rank and (self[tid][chld].rank < min_rank
                              or rank <= min_rank or parent_rank <= min_rank)):
                rank_prune = True
            # Check conditions for pruning the leaf
            if child_acc < min_taxa or rank_prune:
                # Check conditions for saving the data of leaf in the parent
                if child_acc > 0 and (
                        not just_min_rank or
                    (rank_prune and
                     (rank == min_rank or parent_rank <= min_rank))):
                    update_score_and_acc(chld, child_acc)
                    # Accumulate abundance in higher tax before pruning
                    self[tid].counts += self[tid][chld].counts
                pruned: TaxTree = self[tid].pop(chld)  # Prune the leaf
                assert not pruned, f'{tid}-//->{chld}->{pruned}'
                continue
            # Do for non-pruned leafs
            update_score_and_acc(chld, child_acc)
            if out:
                populate_output(chld, self[tid])
        # If not counts, calculate score from leaves
        # if not abun and self[tid].acc and self[tid]:
        #    self[tid].score = sum([
        #        self[tid][chld].score * self[tid][chld].acc
        #        / self[tid].acc for chld in self[tid]])
        # If ROOT, populate results
        if tid == ROOT and out:
            populate_output(ROOT, self)
        return self[tid].acc
Esempio n. 7
0
def main():
    """Main entry point to script."""
    # Argument Parser Configuration
    parser = argparse.ArgumentParser(
        description='Extract reads following Centrifuge/Kraken output',
        epilog=f'%(prog)s  - {__author__} - {__date__}')
    parser.add_argument('-V',
                        '--version',
                        action='version',
                        version=f'%(prog)s release {__version__} ({__date__})')
    parser.add_argument('-f',
                        '--file',
                        action='store',
                        metavar='FILE',
                        required=True,
                        help='Centrifuge output file.')
    parser.add_argument('-l',
                        '--limit',
                        action='store',
                        metavar='NUMBER',
                        type=int,
                        default=None,
                        help=('Limit of FASTQ reads to extract. '
                              'Default: no limit'))
    parser.add_argument(
        '-m',
        '--maxreads',
        action='store',
        metavar='NUMBER',
        type=int,
        default=None,
        help=('Maximum number of FASTQ reads to search for the taxa. '
              'Default: no maximum'))
    parser.add_argument(
        '-n',
        '--nodespath',
        action='store',
        metavar='PATH',
        default=TAXDUMP_PATH,
        help=('path for the nodes information files (nodes.dmp and names.dmp' +
              ' from NCBI'))
    parser.add_argument(
        '-i',
        '--include',
        action='append',
        metavar='TAXID',
        type=TaxId,
        default=[],
        help=('NCBI taxid code to include a taxon and all underneath ' +
              '(multiple -i is available to include several taxid). ' +
              'By default all the taxa is considered for inclusion.'))
    parser.add_argument(
        '-x',
        '--exclude',
        action='append',
        metavar='TAXID',
        type=TaxId,
        default=[],
        help=('NCBI taxid code to exclude a taxon and all underneath ' +
              '(multiple -x is available to exclude several taxid)'))
    parser.add_argument(
        '-y',
        '--minscore',
        action='store',
        metavar='NUMBER',
        type=lambda txt: Score(float(txt)),
        default=None,
        help=('minimum score/confidence of the classification of a read '
              'to pass the quality filter; all pass by default'))
    filein = parser.add_mutually_exclusive_group(required=True)
    filein.add_argument('-q',
                        '--fastq',
                        action='store',
                        metavar='FILE',
                        default=None,
                        help='Single FASTQ file (no paired-ends)')
    filein.add_argument('-1',
                        '--mate1',
                        action='store',
                        metavar='FILE',
                        default=None,
                        help='Paired-ends FASTQ file for mate 1s '
                        '(filename usually includes _1)')
    parser.add_argument('-2',
                        '--mate2',
                        action='store',
                        metavar='FILE',
                        default=None,
                        help='Paired-ends FASTQ file for mate 2s '
                        '(filename usually includes _2)')

    # timing initialization
    start_time: float = time.time()
    # Program header
    print(f'\n=-= {sys.argv[0]} =-= v{__version__} =-= {__date__} =-=\n')
    sys.stdout.flush()

    # Parse arguments
    args = parser.parse_args()
    output_file = args.file
    nodesfile: Filename = Filename(os.path.join(args.nodespath, NODES_FILE))
    namesfile: Filename = Filename(os.path.join(args.nodespath, NAMES_FILE))
    excluding: Set[TaxId] = set(args.exclude)
    including: Set[TaxId] = set(args.include)
    fastq_1: Filename
    fastq_2: Filename = args.mate2
    if not fastq_2:
        fastq_1 = args.fastq
    else:
        fastq_1 = args.mate1

    # Load NCBI nodes, names and build children
    plasmidfile: Filename = None
    ncbi: Taxonomy = Taxonomy(nodesfile, namesfile, plasmidfile, False,
                              excluding, including)

    # Build taxonomy tree
    print(gray('Building taxonomy tree...'), end='')
    sys.stdout.flush()
    tree = TaxTree()
    tree.grow(taxonomy=ncbi, look_ancestors=False)
    print(green(' OK!'))

    # Get the taxa
    print(gray('Filtering taxa...'), end='')
    sys.stdout.flush()
    ranks: Ranks = Ranks({})
    tree.get_taxa(ranks=ranks, include=including, exclude=excluding)
    print(green(' OK!'))
    taxids: Set[TaxId] = set(ranks)
    taxlevels: TaxLevels = Rank.ranks_to_taxlevels(ranks)
    num_taxlevels = Counter({rank: len(taxlevels[rank]) for rank in taxlevels})
    num_taxlevels = +num_taxlevels

    # Statistics about including taxa
    print(f'  {len(taxids)}\033[90m taxid selected in \033[0m', end='')
    print(f'{len(num_taxlevels)}\033[90m different taxonomical levels:\033[0m')
    for rank in num_taxlevels:
        print(f'  Number of different {rank}: {num_taxlevels[rank]}')
    assert taxids, red('ERROR! No taxids to search for!')

    # Get the records
    records: List[SeqRecord] = []
    num_seqs: int = 0
    # timing initialization
    start_time_load: float = time.perf_counter()
    print(gray(f'Loading output file {output_file}...'), end='')
    sys.stdout.flush()
    try:
        with open(output_file, 'rU') as file:
            file.readline()  # discard header
            for num_seqs, record in enumerate(SeqIO.parse(file, 'centrifuge')):
                tid: TaxId = record.annotations['taxID']
                if tid not in taxids:
                    continue  # Ignore read if low confidence
                score: Score = Score(record.annotations['score'])
                if args.minscore is not None and score < args.minscore:
                    continue
                records.append(record)
    except FileNotFoundError:
        raise Exception(red('ERROR!') + 'Cannot read "' + output_file + '"')
    print(green(' OK!'))

    # Basic records statistics
    print(
        gray('  Load elapsed time: ') +
        f'{time.perf_counter() - start_time_load:.3g}' + gray(' sec'))
    print(f'  \033[90mMatching reads: \033[0m{len(records):_d} \033[90m\t'
          f'(\033[0m{len(records)/num_seqs:.4%}\033[90m of sample)')
    sys.stdout.flush()

    # FASTQ sequence dealing
    # records_ids: List[SeqRecord] = [record.id for record in records]
    records_ids: Set[SeqRecord] = {record.id for record in records}
    seqs1: List[SeqRecord] = []
    seqs2: List[SeqRecord] = []
    extracted: int = 0
    i: int = 0
    if fastq_2:
        print(
            f'\033[90mLoading FASTQ files {fastq_1} and {fastq_2}...\n'
            f'Mseqs: \033[0m',
            end='')
        sys.stdout.flush()
        try:
            with open(fastq_1, 'rU') as file1, open(fastq_2, 'rU') as file2:
                for i, (rec1, rec2) in enumerate(
                        zip(SeqIO.parse(file1, 'quickfastq'),
                            SeqIO.parse(file2, 'quickfastq'))):
                    if not records_ids or (args.maxreads and i >= args.maxreads
                                           ) or (args.limit
                                                 and extracted >= args.limit):
                        break
                    elif not i % 1000000:
                        print(f'{i//1000000:_d}', end='')
                        sys.stdout.flush()
                    elif not i % 100000:
                        print('.', end='')
                        sys.stdout.flush()
                    try:
                        records_ids.remove(rec1.id)
                    except KeyError:
                        pass
                    else:
                        seqs1.append(rec1)
                        seqs2.append(rec2)
                        extracted += 1

        except FileNotFoundError:
            raise Exception('\n\033[91mERROR!\033[0m Cannot read FASTQ files')
    else:
        print(f'\033[90mLoading FASTQ files {fastq_1}...\n'
              f'Mseqs: \033[0m',
              end='')
        sys.stdout.flush()
        try:
            with open(fastq_1, 'rU') as file1:
                for i, rec1 in enumerate(SeqIO.parse(file1, 'quickfastq')):
                    if not records_ids or (args.maxreads and i >= args.maxreads
                                           ) or (args.limit
                                                 and extracted >= args.limit):
                        break
                    elif not i % 1000000:
                        print(f'{i//1000000:_d}', end='')
                        sys.stdout.flush()
                    elif not i % 100000:
                        print('.', end='')
                        sys.stdout.flush()
                    try:
                        records_ids.remove(rec1.id)
                    except KeyError:
                        pass
                    else:
                        seqs1.append(rec1)
                        extracted += 1
        except FileNotFoundError:
            raise Exception('\n\033[91mERROR!\033[0m Cannot read FASTQ file')
    print(cyan(f' {i/1e+6:.3g} Mseqs'), green('OK! '))

    def format_filename(fastq: Filename) -> Filename:
        """Auxiliary function to properly format the output filenames.

        Args:
            fastq: Complete filename of the fastq input file

        Returns: Filename of the rextracted fastq output file
        """
        fastq_filename, _ = os.path.splitext(fastq)
        output_list: List[str] = [fastq_filename, '_rxtr']
        if including:
            output_list.append('_incl')
            output_list.extend('_'.join(including))
        if excluding:
            output_list.append('_excl')
            output_list.extend('_'.join(excluding))
        output_list.append('.fastq')
        return Filename(''.join(output_list))

    filename1: Filename = format_filename(fastq_1)
    SeqIO.write(seqs1, filename1, 'quickfastq')
    print(gray('Wrote'), magenta(f'{len(seqs1)}'), gray('reads in'), filename1)
    if fastq_2:
        filename2: Filename = format_filename(fastq_2)
        SeqIO.write(seqs2, filename2, 'quickfastq')
        print(gray('Wrote'), magenta(f'{len(seqs1)}'), gray('reads in'),
              filename2)

    # Timing results
    print(gray('Total elapsed time:'),
          time.strftime("%H:%M:%S", time.gmtime(time.time() - start_time)))
def main():
    """Main entry point to Recentrifuge."""
    def configure_parser():
        """Argument Parser Configuration"""
        parser = argparse.ArgumentParser(
            description='Analyze results of metagenomic taxonomic classifiers',
            epilog=f'%(prog)s  - Release {__version__} - {__date__}' + LICENSE,
            formatter_class=argparse.RawDescriptionHelpFormatter)
        parser.add_argument(
            '-V',
            '--version',
            action='version',
            version=f'%(prog)s version {__version__} released in {__date__}')
        parser_in = parser.add_argument_group(
            'input', 'Define Recentrifuge input files and formats')
        parser_in.add_argument('-n',
                               '--nodespath',
                               action='store',
                               metavar='PATH',
                               default=TAXDUMP_PATH,
                               help=('path for the nodes information files '
                                     '(nodes.dmp and names.dmp from NCBI)'))
        parser_filein = parser_in.add_mutually_exclusive_group(required=True)
        parser_filein.add_argument(
            '-f',
            '--file',
            action='append',
            metavar='FILE',
            type=Filename,
            help=('Centrifuge output files. If a single directory is entered, '
                  'every .out file inside will be taken as a different sample.'
                  ' Multiple -f is available to include several samples.'))
        parser_filein.add_argument(
            '-l',
            '--lmat',
            action='append',
            metavar='FILE',
            type=Filename,
            default=None,
            help=('LMAT output dir or file prefix. If just "." is entered, '
                  'every subdirectory under the current directory will be '
                  'taken as a sample and scanned looking for LMAT output files'
                  '. Multiple -l is available to include several samples.'))
        parser_filein.add_argument(
            '-k',
            '--clark',
            action='append',
            metavar='FILE',
            type=Filename,
            help=('CLARK(S) output files. If a single directory is entered, '
                  'every .csv file inside will be taken as a different sample.'
                  ' Multiple -k is available to include several samples.'))
        parser_filein.add_argument(
            '-r',
            '--report',
            action='append',
            metavar='FILE',
            type=Filename,
            help=('Centrifuge/Kraken report files '
                  '(multiple -r is available to include several samples)'))
        parser_out = parser.add_argument_group(
            'output', 'Related to the Recentrifuge output files')
        parser_out.add_argument(
            '-o',
            '--outhtml',
            action='store',
            metavar='FILE',
            type=Filename,
            help='HTML output file (if not given, the filename will be '
            'inferred from input files)')
        parser_out.add_argument(
            '-e',
            '--excel',
            action='store',
            metavar='OUTPUT_TYPE',
            choices=[str(excel) for excel in Excel],
            default=str(Excel(0)),
            help=(f'type of excel report to be generated, and can be one of '
                  f'{[str(excel) for excel in Excel]}'))
        parser_coarse = parser.add_argument_group(
            'tuning', 'Coarse tuning of algorithm parameters')
        parser_cross = parser_coarse.add_mutually_exclusive_group(
            required=False)
        parser_cross.add_argument(
            '-c',
            '--controls',
            action='store',
            metavar='CONTROLS_NUMBER',
            type=int,
            default=0,
            help=('this number of first samples will be treated as negative '
                  'controls; default is no controls'))
        parser_coarse.add_argument(
            '-s',
            '--scoring',
            action='store',
            metavar='SCORING',
            choices=[str(each_score) for each_score in Scoring],
            default=str(Scoring(0)),
            help=(f'type of scoring to be applied, and can be one of '
                  f'{[str(scoring) for scoring in Scoring]}'))
        parser_coarse.add_argument(
            '-y',
            '--minscore',
            action='store',
            metavar='NUMBER',
            type=lambda txt: Score(float(txt)),
            default=None,
            help=('minimum score/confidence of the classification of a read '
                  'to pass the quality filter; all pass by default'))
        parser_coarse.add_argument(
            '-m',
            '--mintaxa',
            action='store',
            metavar='INT',
            type=int,
            default=DEFMINTAXA,
            help='minimum taxa to avoid collapsing one level to the parent one'
        )
        parser_coarse.add_argument(
            '-x',
            '--exclude',
            action='append',
            metavar='TAXID',
            type=Id,
            default=[],
            help=('NCBI taxid code to exclude a taxon and all underneath '
                  '(multiple -x is available to exclude several taxid)'))
        parser_coarse.add_argument(
            '-i',
            '--include',
            action='append',
            metavar='TAXID',
            type=Id,
            default=[],
            help=('NCBI taxid code to include a taxon and all underneath '
                  '(multiple -i is available to include several taxid); '
                  'by default, all the taxa are considered for inclusion'))
        parser_cross.add_argument('-a',
                                  '--avoidcross',
                                  action='store_true',
                                  help='avoid cross analysis')
        parser_fine = parser.add_argument_group(
            'fine tuning', 'Fine tuning of algorithm parameters')
        parser_fine.add_argument(
            '-z',
            '--ctrlminscore',
            action='store',
            metavar='NUMBER',
            type=lambda txt: Score(float(txt)),
            default=None,
            help=('minimum score/confidence of the classification of a read '
                  'in control samples to pass the quality filter; if defaults '
                  'to "minscore"'))
        parser_fine.add_argument(
            '-w',
            '--ctrlmintaxa',
            action='store',
            metavar='INT',
            type=int,
            default=None,
            help='minimum taxa to avoid collapsing one level to the parent one'
            ' in control samples; it defaults to "mintaxa"')
        parser_fine.add_argument(
            '-u',
            '--summary',
            action='store',
            metavar='OPTION',
            choices=['add', 'only', 'avoid'],
            default='add',
            help=(
                'select to "add" summary samples to other samples, or to '
                '"only" show summary samples or to "avoid" summaries at all'))
        parser_fine.add_argument(
            '-t',
            '--takeoutroot',
            action='store_true',
            help='remove counts directly assigned to the "root" level')
        parser_fine.add_argument('--nokollapse',
                                 action='store_true',
                                 help='show the "cellular organisms" taxon')
        parser_mode = parser.add_argument_group('advanced',
                                                'Advanced modes of running')
        parser_mode.add_argument(
            '--dummy',  # hidden flag: just generate a dummy plot for JS debug
            action='store_true',
            help=argparse.SUPPRESS)
        parser_mode.add_argument(
            '-g',
            '--debug',
            action='store_true',
            help='increase output verbosity and perform additional checks')
        parser_mode.add_argument('--sequential',
                                 action='store_true',
                                 help='deactivate parallel processing')
        return parser

    def check_debug():
        """Check debugging mode"""
        if args.debug:
            print(blue('INFO:'), gray('Debugging mode activated'))
            print(blue('INFO:'), gray('Active parameters:'))
            for key, value in vars(args).items():
                if value:
                    print(gray(f'\t{key} ='), f'{value}')

    def select_inputs():
        """Choose right classifier, input and output files"""
        nonlocal process, scoring, input_files, plasmidfile, classifier

        if reports:
            classifier = Classifier.KRAKEN
            process = process_report
            input_files = reports
        elif clarks:
            classifier = Classifier.CLARK
            process = process_output
            input_files = clarks
            if len(clarks) == 1 and os.path.isdir(clarks[0]):
                select_clark_inputs(clarks)
        elif lmats:
            classifier = Classifier.LMAT
            scoring = Scoring.LMAT
            process = process_output
            input_files = lmats
            plasmidfile = Filename(os.path.join(args.nodespath, PLASMID_FILE))
            select_lmat_inputs(lmats)
        elif outputs:
            classifier = Classifier.CENTRIFUGE
            process = process_output
            input_files = outputs
            if len(outputs) == 1 and os.path.isdir(outputs[0]):
                select_centrifuge_inputs(outputs)

    def check_controls():
        """Check and info about the control samples"""
        if args.controls:
            if args.controls > len(input_files):
                print(red(' ERROR!'), gray('More controls than samples'))
                exit(1)
            print(gray('Control(s) sample(s) for subtractions:'))
            for i in range(args.controls):
                print(blue(f'\t{input_files[i]}'))

    def select_html_file():
        """HTML filename selection"""
        nonlocal htmlfile
        if lmats:  # Select case for dir name or filename prefix
            if os.path.isdir(lmats[0]):  # Dir name
                dirname = os.path.dirname(os.path.normpath(lmats[0]))
                if not dirname or dirname == '.':
                    basename = 'output'
                else:
                    basename = os.path.basename(dirname)
            else:  # Explicit path and file name prefix is provided
                dirname, basename = os.path.split(lmats[0])
            htmlfile = Filename(os.path.join(dirname, basename + HTML_SUFFIX))
        elif reports:
            htmlfile = Filename(reports[0].split('_mhl')[0] + HTML_SUFFIX)
        else:
            htmlfile = Filename(outputs[0].split('_mhl')[0] + HTML_SUFFIX)

    def read_samples():
        """Read samples"""
        print(gray('\nPlease, wait, processing files in parallel...\n'))
        # Enable parallelization with 'spawn' under known platforms
        if platform.system() and not args.sequential:  # Only for known systems
            mpctx = mp.get_context('fork')
            with mpctx.Pool(
                    processes=min(os.cpu_count(), len(input_files))) as pool:
                async_results = [
                    pool.apply_async(
                        process,
                        args=[
                            input_files[num],  # file name
                            True if num < args.controls else False
                        ],  # is ctrl?
                        kwds=kwargs) for num in range(len(input_files))
                ]
                for file, (sample, tree, out, stat,
                           err) in zip(input_files,
                                       [r.get() for r in async_results]):
                    if err is Err.NO_ERROR:
                        samples.append(sample)
                        trees[sample] = tree
                        taxids[sample] = out.get_taxlevels()
                        counts[sample] = out.counts
                        accs[sample] = out.accs
                        scores[sample] = out.scores
                        stats[sample] = stat
                    elif err is Err.VOID_CTRL:
                        print('There were void controls.', red('Aborting!'))
                        exit(1)
        else:  # sequential processing of each sample
            for num, file in enumerate(input_files):
                (sample, tree, out, stat,
                 err) = process(file, True if num < args.controls else False,
                                **kwargs)
                if err is Err.NO_ERROR:
                    samples.append(sample)
                    trees[sample] = tree
                    taxids[sample] = out.get_taxlevels()
                    counts[sample] = out.counts
                    accs[sample] = out.accs
                    scores[sample] = out.scores
                    stats[sample] = stat
                elif err is Err.VOID_CTRL:
                    print('There were void controls.', red('Aborting!'))
                    exit(1)
        raw_samples.extend(samples)  # Store raw sample names

    def analyze_samples():
        """Cross analysis of samples in parallel by taxlevel"""
        print(gray('Please, wait. Performing cross analysis in parallel...\n'))
        # Update kwargs with more parameters for the followings func calls
        kwargs.update({
            'taxids': taxids,
            'counts': counts,
            'scores': scores,
            'accs': accs,
            'raw_samples': raw_samples
        })
        if platform.system() and not args.sequential:  # Only for known systems
            mpctx = mp.get_context('fork')  # Important for OSX&Win
            with mpctx.Pool(processes=min(os.cpu_count(),
                                          len(Rank.selected_ranks))) as pool:
                async_results = [
                    pool.apply_async(process_rank, args=[level], kwds=kwargs)
                    for level in Rank.selected_ranks
                ]
                for level, (smpls, abunds, accumulators,
                            score) in zip(Rank.selected_ranks,
                                          [r.get() for r in async_results]):
                    samples.extend(smpls)
                    counts.update(abunds)
                    accs.update(accumulators)
                    scores.update(score)
        else:  # sequential processing of each selected rank
            for level in Rank.selected_ranks:
                (smpls, abunds, accumulators,
                 score) = process_rank(level, **kwargs)
                samples.extend(smpls)
                counts.update(abunds)
                accs.update(accumulators)
                scores.update(score)

    def summarize_samples():
        """Summary of samples in parallel by type of cross-analysis"""
        # timing initialization
        summ_start_time: float = time.perf_counter()
        print(gray('Please, wait. Generating summaries in parallel...'))
        # Update kwargs with more parameters for the followings func calls
        kwargs.update({'samples': samples})
        # Get list of set of samples to summarize (note pylint bug #776)
        # pylint: disable=unsubscriptable-object
        target_analysis: col.OrderedDict[str, None] = col.OrderedDict({
            f'{raw}_{study}': None
            for study in [STR_EXCLUSIVE, STR_CONTROL] for raw in raw_samples
            for smpl in samples if smpl.startswith(f'{raw}_{study}')
        })
        # pylint: enable=unsubscriptable-object
        # Add shared and control_shared analysis if they exist (are not void)
        for study in [STR_SHARED, STR_CONTROL_SHARED]:
            for smpl in samples:
                if smpl.startswith(study):
                    target_analysis[study] = None
                    break

        if platform.system() and not args.sequential:  # Only for known systems
            mpctx = mp.get_context('fork')
            with mpctx.Pool(
                    processes=min(os.cpu_count(), len(input_files))) as pool:
                async_results = [
                    pool.apply_async(summarize_analysis,
                                     args=[analysis],
                                     kwds=kwargs)
                    for analysis in target_analysis
                ]
                for analysis, (summary, abund, acc,
                               score) in zip(target_analysis,
                                             [r.get() for r in async_results]):
                    if summary:  # Avoid adding empty samples
                        summaries.append(summary)
                        counts[summary] = abund
                        accs[summary] = acc
                        scores[summary] = score
        else:  # sequential processing of each selected rank
            for analysis in target_analysis:
                (summary, abund, acc,
                 score) = summarize_analysis(analysis, **kwargs)
                if summary:  # Avoid adding empty samples
                    summaries.append(summary)
                    counts[summary] = abund
                    accs[summary] = acc
                    scores[summary] = score
        # Timing results
        print(gray('Summary elapsed time:'),
              f'{time.perf_counter() - summ_start_time:.3g}', gray('sec'))

    def generate_krona():
        """Generate Krona plot with all the results via Krona 2.0 XML spec"""

        print(gray('\nBuilding the taxonomy multiple tree... '), end='')
        sys.stdout.flush()
        krona: KronaTree = KronaTree(
            samples,
            num_raw_samples=len(raw_samples),
            stats=stats,
            min_score=Score(
                min([
                    min(scores[sample].values()) for sample in samples
                    if len(scores[sample])
                ])),
            max_score=Score(
                max([
                    max(scores[sample].values()) for sample in samples
                    if len(scores[sample])
                ])),
            scoring=scoring,
        )
        polytree.grow(ontology=ncbi,
                      abundances=counts,
                      accs=accs,
                      scores=scores)
        print(green('OK!'))
        print(gray('Generating final plot (') + magenta(htmlfile) +
              gray(')... '),
              end='')
        sys.stdout.flush()
        polytree.toxml(ontology=ncbi, krona=krona)
        krona.tohtml(htmlfile, pretty=False)
        print(green('OK!'))

    def generate_excel():
        """Generate Excel with results via pandas DataFrame"""

        xlsx_name: Filename = Filename(htmlfile.split('.html')[0] + '.xlsx')
        print(gray(f'Generating Excel {str(excel).lower()} summary (') +
              magenta(xlsx_name) + gray(')... '),
              end='')
        sys.stdout.flush()
        xlsxwriter = pd.ExcelWriter(xlsx_name)
        list_rows: List = []

        # Save raw samples basic statistics
        data_frame: pd.DataFrame = pd.DataFrame.from_dict(
            {raw: stats[raw].to_dict()
             for raw in raw_samples})
        data_frame.to_excel(xlsxwriter, sheet_name='_sample_stats')

        # Save taxid related statistics per sample
        if excel is Excel.FULL:
            polytree.to_items(ontology=ncbi, items=list_rows)
            # Generate the pandas DataFrame from items and export to Excel
            iterable_1 = [samples, [COUNT, UNASSIGNED, SCORE]]
            cols1 = pd.MultiIndex.from_product(iterable_1,
                                               names=['Samples', 'Stats'])
            iterable_2 = [['Details'], ['Rank', 'Name']]
            cols2 = pd.MultiIndex.from_product(iterable_2)
            cols = cols1.append(cols2)
            data_frame = pd.DataFrame.from_items(list_rows,
                                                 orient='index',
                                                 columns=cols)
            data_frame.index.names = ['Id']
            data_frame.to_excel(xlsxwriter, sheet_name=str(excel))
        elif excel is Excel.CMPLXCRUNCHER:
            target_ranks: List = [Rank.NO_RANK]
            if args.controls:  # if controls, add specific sheet for rank
                target_ranks.extend(Rank.selected_ranks)
            for rank in target_ranks:  # Once for no rank dependency (NO_RANK)
                indexes: List[int]
                sheet_name: str
                columns: List[str]
                if args.controls:
                    indexes = [
                        i for i in range(len(raw_samples), len(samples))
                        # Check if sample ends in _(STR_CONTROL)_(rank)
                        if (STR_CONTROL in samples[i].split('_')[-2:] and
                            rank.name.lower() in samples[i].split('_')[-1:])
                    ]
                    sheet_name = f'{STR_CONTROL}_{rank.name.lower()}'
                    columns = [
                        samples[i].replace(
                            '_' + STR_CONTROL + '_' + rank.name.lower(), '')
                        for i in indexes
                    ]
                if rank is Rank.NO_RANK:  # No rank dependency
                    indexes = list(range(len(raw_samples)))
                    sheet_name = f'raw_samples_{rank.name.lower()}'
                    columns = raw_samples
                list_rows = []
                polytree.to_items(ontology=ncbi,
                                  items=list_rows,
                                  sample_indexes=indexes)
                data_frame = pd.DataFrame.from_items(list_rows,
                                                     orient='index',
                                                     columns=columns)
                data_frame.index.names = ['Id']
                data_frame.to_excel(xlsxwriter, sheet_name=sheet_name)
        else:
            raise Exception(red('\nERROR!'), f'Unknown Excel option "{excel}"')
        xlsxwriter.save()
        print(green('OK!'))

    # timing initialization
    start_time: float = time.time()
    # Program header
    print(f'\n=-= {sys.argv[0]} =-= v{__version__} - {__date__}'
          f' =-= by {__author__} =-=\n')
    sys.stdout.flush()

    # Parse arguments
    argparser = configure_parser()
    args = argparser.parse_args()
    outputs: List[Filename] = args.file
    reports: List[Filename] = args.report
    lmats: List[Filename] = args.lmat
    clarks: List[Filename] = args.clark
    input_files: List[Filename]
    nodesfile: Filename = Filename(os.path.join(args.nodespath, NODES_FILE))
    namesfile: Filename = Filename(os.path.join(args.nodespath, NAMES_FILE))
    htmlfile: Filename = args.outhtml
    collapse: bool = not args.nokollapse
    excluding: Set[Id] = set(args.exclude)
    including: Set[Id] = set(args.include)
    scoring: Scoring = Scoring[args.scoring]
    excel: Excel = Excel[args.excel]

    check_debug()

    plasmidfile: Filename = None
    classifier: Classifier
    process: Callable[..., Tuple[Sample, TaxTree, SampleDataById, SampleStats,
                                 Err]]
    select_inputs()
    check_controls()
    if not htmlfile:
        select_html_file()

    # Load NCBI nodes, names and build children
    ncbi: Taxonomy = Taxonomy(nodesfile, namesfile, plasmidfile, collapse,
                              excluding, including, args.debug)

    # If dummy flag enabled, just create dummy krona and exit
    if args.dummy:
        _debug_dummy_plot(ncbi, htmlfile, scoring)
        exit(0)

    # Declare variables that will hold results for the samples analyzed
    trees: Dict[Sample, TaxTree] = {}
    counts: Dict[Sample, Counter[Id]] = {}
    accs: Dict[Sample, Counter[Id]] = {}
    taxids: Dict[Sample, TaxLevels] = {}
    scores: Dict[Sample, Dict[Id, Score]] = {}
    stats: Dict[Sample, SampleStats] = {}
    samples: List[Sample] = []
    raw_samples: List[Sample] = []

    # Define dictionary of parameters for methods to be called (to be extended)
    kwargs = {
        'controls':
        args.controls,
        'ctrlminscore': (args.ctrlminscore
                         if args.ctrlminscore is not None else args.minscore),
        'ctrlmintaxa':
        (args.ctrlmintaxa if args.ctrlmintaxa is not None else args.mintaxa),
        'debug':
        args.debug,
        'root':
        args.takeoutroot,
        'classifier':
        classifier,
        'minscore':
        args.minscore,
        'mintaxa':
        args.mintaxa,
        'scoring':
        scoring,
        'ontology':
        ncbi,
    }
    # The big stuff (done in parallel)
    read_samples()
    # Avoid cross analysis if just one report file or explicitly stated by flag
    if len(raw_samples) > 1 and not args.avoidcross:
        analyze_samples()
        if args.summary != 'avoid':
            summaries: List[Sample] = []
            summarize_samples()
            if args.summary == 'only':
                samples = raw_samples + summaries
            else:
                samples.extend(summaries)
    # Final result generation is done in sequential mode

    polytree: MultiTree = MultiTree(samples=samples)
    generate_krona()
    if _USE_PANDAS:
        generate_excel()
    else:
        print(yellow('WARNING!'),
              'Pandas not installed: Excel cannot be created.')

    # Timing results
    print(gray('Total elapsed time:'),
          time.strftime("%H:%M:%S", time.gmtime(time.time() - start_time)))
Esempio n. 9
0
def main():
    """Main entry point to script."""
    def vprint(*args):
        """Print only if verbose/debug mode is enabled"""
        if debug:
            print(*args, end='')
            sys.stdout.flush()

    def configure_parser():
        """Argument Parser Configuration"""
        parser = argparse.ArgumentParser(
            description='Generate mock samples for Recentrifuge testing',
            epilog=f'%(prog)s  - Release {__version__} - {__date__}' + LICENSE,
            formatter_class=argparse.RawDescriptionHelpFormatter)
        parser_mode = parser.add_mutually_exclusive_group(required=True)
        parser_mode.add_argument(
            '-f',
            '--file',
            action='store',
            metavar='FILE',
            type=Filename,
            help='Explicit source: Centrifuge output file as source')
        parser_mode.add_argument(
            '-r',
            '--random',
            action='store',
            metavar='MHL',
            type=int,
            default=15,
            help=('Random score generated. Please provide the minimum hit '
                  'length (mhl) of the classification; 15 by default'))
        parser.add_argument(
            '-g',
            '--debug',
            action='store_true',
            help='increase output verbosity and perform additional checks')
        parser_input = parser.add_mutually_exclusive_group(required=True)
        parser_input.add_argument(
            '-m',
            '--mock',
            action='append',
            metavar='FILE',
            type=Filename,
            help=('Mock files to be read for mock Centrifuge sequences layout.'
                  ' If a single directory is entered, every .mck file inside '
                  'will be taken as a different sample. '
                  'Multiple -f is available to include several samples.'))
        if _USE_PANDAS:
            parser_input.add_argument('-x',
                                      '--xcel',
                                      action='store',
                                      metavar='FILE',
                                      type=Filename,
                                      help='Excel file with the mock layout.')
        parser.add_argument('-n',
                            '--nodespath',
                            action='store',
                            metavar='PATH',
                            default=TAXDUMP_PATH,
                            help=('path for the nodes information files '
                                  '(nodes.dmp and names.dmp from NCBI)'))
        parser.add_argument(
            '-V',
            '--version',
            action='version',
            version=f'%(prog)s release {__version__} ({__date__})')
        return parser

    def check_debug():
        """Check debugging mode"""
        if args.debug:
            print(gray('INFO: Debugging mode activated\n'))

    def read_mock_files(mock: Filename) -> Counter[Id]:
        """Read a mock layout (.mck) file"""
        mock_layout: Counter[Id] = col.Counter()
        with open(mock, 'r') as file:
            vprint(gray('\nProcessing'), blue(mock), gray('file:\n'))
            for line in file:
                if line.startswith('#'):
                    continue
                _tid, _num = line.split('\t')
                tid = Id(_tid)
                num = int(_num)
                mock_layout[tid] = num
                vprint(num, gray('\treads for taxid\t'), tid, '\t(',
                       cyan(ncbi.get_name(tid)), ')\n')
        return mock_layout

    def mock_from_source(out: Filename, mock_layout: Counter[Id]) -> None:
        """Generate a mock Centrifuge output file from source file"""
        with open(out, 'w') as fout, open(args.file) as fcfg:
            vprint(gray('Generating'), blue(out), gray('file... '))
            fout.write(fcfg.readline())  # copy cfg output file header
            reads_writen: int = 0
            for line in fcfg:
                tid = Id(line.split('\t')[2])
                if mock_layout[tid]:
                    fout.write(line)
                    mock_layout[tid] -= 1
                    reads_writen += 1
                    if not sum(mock_layout.values()):
                        vprint(reads_writen, 'reads', green('OK!\n'))
                        break
        if sum(mock_layout.values()):
            print(red('ERROR!\n'))
            print(gray('Incomplete read copy by taxid:'))
            mock_layout = +mock_layout  # Delete zero counts elements
            for tid in mock_layout:
                print(yellow(mock_layout[tid]), gray('reads missing for tid'),
                      tid, '(', cyan(ncbi.get_name(tid)), ')\n')

    def mock_from_scratch(out: Filename, mock_layout: Counter[Id]) -> None:
        """Generate a mock Centrifuge output file from scratch"""
        with open(out, 'w') as fout:
            vprint(gray('Generating'), blue(out), gray('file... '))
            fout.write('readID\tseqID\ttaxID\tscore\t2ndBestScore\t'
                       'hitLength\tqueryLength\tnumMatches\n')
            reads_writen: int = 0
            for numtid in mock_layout:
                tid = Id(numtid)  # Convert to Id the excel integer
                maxhl: int = random.randint(args.random + 1, MAX_HIT_LENGTH)
                rank: str = str(ncbi.get_rank(tid)).lower()
                for _ in range(int(mock_layout[numtid])):
                    hit_length = random.randint(args.random + 1, maxhl)
                    fout.write(f'test{reads_writen}\t{rank}\t'
                               f'{tid}\t{(hit_length-15)**2}\t'
                               f'0\t{hit_length}\t{MAX_HIT_LENGTH}\t1\n')
                    reads_writen += 1
            vprint(reads_writen, 'reads', green('OK!\n'))

    def by_mock_files() -> None:
        """Do the job in case of mock files"""
        if len(args.mock) == 1 and os.path.isdir(args.mock[0]):
            select_centrifuge_inputs(args.mock, ext='.mck')
        for mock in args.mock:
            mock_layout: Counter[Id] = read_mock_files(mock)
            test: Filename = Filename(mock.split('.mck')[0] + '.out')
            if args.file:
                mock_from_source(test, mock_layout)
            else:
                mock_from_scratch(test, mock_layout)

    def by_excel_file() -> None:
        """Do the job in case of Excel file with all the details"""
        dirname = os.path.dirname(args.xcel)
        # Expected index (taxids) in column after taxa name, and last row will
        #  be removed (reserved for sum of reads in Excel file)
        mock_df = pd.read_excel(args.xcel,
                                index_col=1,
                                skip_footer=1,
                                dtype=str)
        del mock_df['RECENTRIFUGE MOCK']
        vprint(gray('Layout to generate the mock files:\n'), mock_df, '\n')
        for name, series in mock_df.iteritems():
            mock_layout: Counter[Id] = col.Counter(series.to_dict(dict))
            # In prev, series.to_dict(col.Counter) fails, so this is workaround
            test: Filename = Filename(os.path.join(dirname, name + '.out'))
            if args.file:
                mock_from_source(test, mock_layout)
            else:
                mock_from_scratch(test, mock_layout)

    # Program header
    print(f'\n=-= {sys.argv[0]} =-= v{__version__} - {__date__}'
          f' =-= by {__author__} =-=\n')
    sys.stdout.flush()

    # Parse arguments
    argparser = configure_parser()
    args = argparser.parse_args()
    nodesfile: Filename = Filename(os.path.join(args.nodespath, NODES_FILE))
    namesfile: Filename = Filename(os.path.join(args.nodespath, NAMES_FILE))
    debug: bool = args.debug

    check_debug()

    # Load NCBI nodes, names and build children
    ncbi: Taxonomy = Taxonomy(nodesfile, namesfile, None, False)

    if args.mock:
        by_mock_files()
    elif args.xcel:
        by_excel_file()