def test_python_rsquared(rating_true, rating_pred):
    assert (rsquared(
        rating_true=rating_true,
        rating_pred=rating_true,
        col_prediction=DEFAULT_RATING_COL,
    ) == pytest.approx(1.0, TOL))
    assert rsquared(rating_true, rating_pred) == pytest.approx(-31.699029, TOL)
Esempio n. 2
0
def rating_metrics_python(test, predictions):
    return {
        "RMSE": rmse(test, predictions, **COL_DICT),
        "MAE": mae(test, predictions, **COL_DICT),
        "R2": rsquared(test, predictions, **COL_DICT),
        "Explained Variance": exp_var(test, predictions, **COL_DICT),
    }
def test_python_errors(rating_true, rating_pred):
    with pytest.raises(ValueError):
        rmse(rating_true, rating_true, col_user="******")

    with pytest.raises(ValueError):
        mae(
            rating_pred,
            rating_pred,
            col_rating=DEFAULT_PREDICTION_COL,
            col_user="******",
        )

    with pytest.raises(ValueError):
        rsquared(rating_true, rating_pred, col_item="not_item")

    with pytest.raises(ValueError):
        exp_var(
            rating_pred,
            rating_pred,
            col_rating=DEFAULT_PREDICTION_COL,
            col_item="not_item",
        )

    with pytest.raises(ValueError):
        precision_at_k(rating_true, rating_pred, col_rating="not_rating")

    with pytest.raises(ValueError):
        recall_at_k(rating_true, rating_pred, col_prediction="not_prediction")

    with pytest.raises(ValueError):
        ndcg_at_k(rating_true, rating_true, col_user="******")

    with pytest.raises(ValueError):
        map_at_k(
            rating_pred,
            rating_pred,
            col_rating=DEFAULT_PREDICTION_COL,
            col_user="******",
        )