Esempio n. 1
0
def optimization(trainingParameters, trainingReflectances, testParameters,
                 testReflectances):

    BVFs = np.unique(trainingParameters[:, 0])
    Vss = np.unique(trainingParameters[:, 1])

    #%% build optimization function from rectangular reflectance grid

    reflectanceGrid3D = np.reshape(
        trainingReflectances,
        (len(BVFs), len(Vss), trainingReflectances.shape[1]))
    functionToMinimize = ReflectanceError(BVFs, Vss, reflectanceGrid3D)

    #%% do optimization

    estimatedParameters = np.zeros_like(testParameters)
    absErrors = np.zeros_like(testParameters)

    for idx, (testParameter, testReflectance) in enumerate(
            zip(testParameters, testReflectances)):
        functionToMinimize.setReflectanceToMatch(testReflectance)
        minimization = minimize(
            functionToMinimize.f,
            [np.median(BVFs), np.median(Vss)],
            method="Nelder-Mead")
        # interpolation extrapolates with constant values. We just crop it to the bounds
        clippedX = np.clip(minimization.x, [min(BVFs), min(Vss)],
                           [max(BVFs), max(Vss)])

        estimatedParameters[idx, :] = clippedX
        absErrors[idx, :] = np.abs(clippedX - testParameter)

    r2Score = r2_score(testParameters.T, estimatedParameters.T)

    return absErrors, r2Score
Esempio n. 2
0
#%% load data

dataFolder = "data/output/"

trainingParameters, trainingReflectances, testParameters, testReflectances = \
    data.perfect(dataFolder)


BVFs = np.unique(trainingParameters[:,0])
Vss  = np.unique(trainingParameters[:,1])


#%% build optimization function from rectangular reflectance grid

reflectanceGrid3D  = np.reshape(trainingReflectances, (len(BVFs), len(Vss), trainingReflectances.shape[1]))
functionToMinimize = ReflectanceError(BVFs, Vss, reflectanceGrid3D)


#%% do optimization

absErrors = np.zeros_like(testParameters)


for idx, (testParameter, testReflectance) in enumerate(zip(testParameters, testReflectances)):
    functionToMinimize.setReflectanceToMatch(testReflectance)
    minimization = minimize(functionToMinimize.f, [np.median(BVFs), np.median(Vss)], method="Nelder-Mead")
    # interpolation extrapolates with constant values. We just crop it to the bounds
    clippedX= np.clip(minimization.x, [min(BVFs), min(Vss)], [max(BVFs), max(Vss)])

    absErrors[idx,:] = np.abs(clippedX - testParameter)