Esempio n. 1
0
    def setup_method(self):
        self.pth = os.path.dirname(os.path.abspath(__file__))

        self.si = SLD(2.07, name='Si')
        self.sio2 = SLD(3.47, name='SiO2')
        self.d2o = SLD(6.36, name='d2o')
        self.h2o = SLD(-0.56, name='h2o')
        self.cm3 = SLD(3.5, name='cm3')
        self.polymer = SLD(2, name='polymer')

        self.sio2_l = self.sio2(40, 3)
        self.polymer_l = self.polymer(200, 3)

        self.structure = (self.si | self.sio2_l | self.polymer_l
                          | self.d2o(0, 3))

        fname = os.path.join(self.pth, 'c_PLP0011859_q.txt')

        self.dataset = ReflectDataset(fname)
        self.model = ReflectModel(self.structure, bkg=2e-7)
        self.objective = Objective(self.model,
                                   self.dataset,
                                   use_weights=False,
                                   transform=Transform('logY'))
        self.global_objective = GlobalObjective([self.objective])
Esempio n. 2
0
    def test_multipledataset_corefinement(self):
        # test corefinement of three datasets
        data361 = ReflectDataset(os.path.join(self.pth, 'e361r.txt'))
        data365 = ReflectDataset(os.path.join(self.pth, 'e365r.txt'))
        data366 = ReflectDataset(os.path.join(self.pth, 'e366r.txt'))

        si = SLD(2.07, name='Si')
        sio2 = SLD(3.47, name='SiO2')
        d2o = SLD(6.36, name='d2o')
        h2o = SLD(-0.56, name='h2o')
        cm3 = SLD(3.47, name='cm3')
        polymer = SLD(1, name='polymer')

        structure361 = si | sio2(10, 4) | polymer(200, 3) | d2o(0, 3)
        structure365 = si | structure361[1] | structure361[2] | cm3(0, 3)
        structure366 = si | structure361[1] | structure361[2] | h2o(0, 3)

        structure365[-1].rough = structure361[-1].rough
        structure366[-1].rough = structure361[-1].rough

        structure361[1].thick.setp(vary=True, bounds=(0, 20))
        structure361[2].thick.setp(value=200., bounds=(200., 250.), vary=True)
        structure361[2].sld.real.setp(vary=True, bounds=(0, 2))
        structure361[2].vfsolv.setp(value=5., bounds=(0., 100.), vary=True)

        model361 = ReflectModel(structure361, bkg=2e-5)
        model365 = ReflectModel(structure365, bkg=2e-5)
        model366 = ReflectModel(structure366, bkg=2e-5)

        model361.bkg.setp(vary=True, bounds=(1e-6, 5e-5))
        model365.bkg.setp(vary=True, bounds=(1e-6, 5e-5))
        model366.bkg.setp(vary=True, bounds=(1e-6, 5e-5))

        objective361 = Objective(model361, data361)
        objective365 = Objective(model365, data365)
        objective366 = Objective(model366, data366)

        global_objective = GlobalObjective(
            [objective361, objective365, objective366])
        # are the right numbers of parameters varying?
        assert_equal(len(global_objective.varying_parameters()), 7)

        # can we set the parameters?
        global_objective.setp(np.array([1e-5, 10, 212, 1, 10, 1e-5, 1e-5]))

        f = CurveFitter(global_objective)
        f.fit()

        indiv_chisqr = np.sum(
            [objective.chisqr() for objective in global_objective.objectives])

        # the overall chi2 should be sum of individual chi2
        global_chisqr = global_objective.chisqr()
        assert_almost_equal(global_chisqr, indiv_chisqr)

        # now check that the parameters were held in common correctly.
        slabs361 = structure361.slabs()
        slabs365 = structure365.slabs()
        slabs366 = structure366.slabs()

        assert_equal(slabs365[0:2, 0:5], slabs361[0:2, 0:5])
        assert_equal(slabs366[0:2, 0:5], slabs361[0:2, 0:5])
        assert_equal(slabs365[-1, 3], slabs361[-1, 3])
        assert_equal(slabs366[-1, 3], slabs361[-1, 3])

        # check that the residuals are the correct lengths
        res361 = objective361.residuals()
        res365 = objective365.residuals()
        res366 = objective366.residuals()
        res_global = global_objective.residuals()
        assert_allclose(res_global[0:len(res361)], res361, rtol=1e-5)
        assert_allclose(res_global[len(res361):len(res361) + len(res365)],
                        res365,
                        rtol=1e-5)
        assert_allclose(res_global[len(res361) + len(res365):],
                        res366,
                        rtol=1e-5)

        repr(global_objective)
Esempio n. 3
0
class TestGlobalFitting(object):
    def setup_method(self):
        self.pth = os.path.dirname(os.path.abspath(__file__))

        self.si = SLD(2.07, name='Si')
        self.sio2 = SLD(3.47, name='SiO2')
        self.d2o = SLD(6.36, name='d2o')
        self.h2o = SLD(-0.56, name='h2o')
        self.cm3 = SLD(3.5, name='cm3')
        self.polymer = SLD(2, name='polymer')

        self.sio2_l = self.sio2(40, 3)
        self.polymer_l = self.polymer(200, 3)

        self.structure = (self.si | self.sio2_l | self.polymer_l
                          | self.d2o(0, 3))

        fname = os.path.join(self.pth, 'c_PLP0011859_q.txt')

        self.dataset = ReflectDataset(fname)
        self.model = ReflectModel(self.structure, bkg=2e-7)
        self.objective = Objective(self.model,
                                   self.dataset,
                                   use_weights=False,
                                   transform=Transform('logY'))
        self.global_objective = GlobalObjective([self.objective])

    def test_residuals_length(self):
        # the residuals should be the same length as the data
        residuals = self.global_objective.residuals()
        assert_equal(residuals.size, len(self.dataset))

    def test_globalfitting(self):
        # smoke test for can the global fitting run?
        # also tests that global fitting gives same output as
        # normal fitting (for a single dataset)
        self.model.scale.setp(vary=True, bounds=(0.1, 2))
        self.model.bkg.setp(vary=True, bounds=(1e-10, 8e-6))
        self.structure[-1].rough.setp(vary=True, bounds=(0.2, 6))
        self.sio2_l.thick.setp(vary=True, bounds=(0.2, 80))
        self.polymer_l.thick.setp(bounds=(0.01, 400), vary=True)
        self.polymer_l.sld.real.setp(vary=True, bounds=(0.01, 4))

        self.objective.transform = Transform('logY')

        starting = np.array(self.objective.parameters)
        with np.errstate(invalid='raise'):
            g = CurveFitter(self.global_objective)
            res_g = g.fit()

            # need the same starting point
            self.objective.setp(starting)
            f = CurveFitter(self.objective)
            res_f = f.fit()

            # individual and global should give the same fit.
            assert_almost_equal(res_g.x, res_f.x)

    def test_multipledataset_corefinement(self):
        # test corefinement of three datasets
        data361 = ReflectDataset(os.path.join(self.pth, 'e361r.txt'))
        data365 = ReflectDataset(os.path.join(self.pth, 'e365r.txt'))
        data366 = ReflectDataset(os.path.join(self.pth, 'e366r.txt'))

        si = SLD(2.07, name='Si')
        sio2 = SLD(3.47, name='SiO2')
        d2o = SLD(6.36, name='d2o')
        h2o = SLD(-0.56, name='h2o')
        cm3 = SLD(3.47, name='cm3')
        polymer = SLD(1, name='polymer')

        structure361 = si | sio2(10, 4) | polymer(200, 3) | d2o(0, 3)
        structure365 = si | structure361[1] | structure361[2] | cm3(0, 3)
        structure366 = si | structure361[1] | structure361[2] | h2o(0, 3)

        structure365[-1].rough = structure361[-1].rough
        structure366[-1].rough = structure361[-1].rough

        structure361[1].thick.setp(vary=True, bounds=(0, 20))
        structure361[2].thick.setp(value=200., bounds=(200., 250.), vary=True)
        structure361[2].sld.real.setp(vary=True, bounds=(0, 2))
        structure361[2].vfsolv.setp(value=5., bounds=(0., 100.), vary=True)

        model361 = ReflectModel(structure361, bkg=2e-5)
        model365 = ReflectModel(structure365, bkg=2e-5)
        model366 = ReflectModel(structure366, bkg=2e-5)

        model361.bkg.setp(vary=True, bounds=(1e-6, 5e-5))
        model365.bkg.setp(vary=True, bounds=(1e-6, 5e-5))
        model366.bkg.setp(vary=True, bounds=(1e-6, 5e-5))

        objective361 = Objective(model361, data361)
        objective365 = Objective(model365, data365)
        objective366 = Objective(model366, data366)

        global_objective = GlobalObjective(
            [objective361, objective365, objective366])
        # are the right numbers of parameters varying?
        assert_equal(len(global_objective.varying_parameters()), 7)

        # can we set the parameters?
        global_objective.setp(np.array([1e-5, 10, 212, 1, 10, 1e-5, 1e-5]))

        f = CurveFitter(global_objective)
        f.fit()

        indiv_chisqr = np.sum(
            [objective.chisqr() for objective in global_objective.objectives])

        # the overall chi2 should be sum of individual chi2
        global_chisqr = global_objective.chisqr()
        assert_almost_equal(global_chisqr, indiv_chisqr)

        # now check that the parameters were held in common correctly.
        slabs361 = structure361.slabs()
        slabs365 = structure365.slabs()
        slabs366 = structure366.slabs()

        assert_equal(slabs365[0:2, 0:5], slabs361[0:2, 0:5])
        assert_equal(slabs366[0:2, 0:5], slabs361[0:2, 0:5])
        assert_equal(slabs365[-1, 3], slabs361[-1, 3])
        assert_equal(slabs366[-1, 3], slabs361[-1, 3])

        # check that the residuals are the correct lengths
        res361 = objective361.residuals()
        res365 = objective365.residuals()
        res366 = objective366.residuals()
        res_global = global_objective.residuals()
        assert_allclose(res_global[0:len(res361)], res361, rtol=1e-5)
        assert_allclose(res_global[len(res361):len(res361) + len(res365)],
                        res365,
                        rtol=1e-5)
        assert_allclose(res_global[len(res361) + len(res365):],
                        res366,
                        rtol=1e-5)

        repr(global_objective)
Esempio n. 4
0
models = []
t = len(cont)

for i in range(t):
    models.append(ReflectModel(structures[i]))
    models[i].scale.setp(vary=True, bounds=(0.005, 10))
    models[i].bkg.setp(datasets[i].y[-1], vary=True, bounds=(1e-4, 1e-10))

objectives = []
t = len(cont)
for i in range(t):
    objectives.append(
        Objective(models[i], datasets[i], transform=Transform("YX4")))

global_objective = GlobalObjective(objectives)

chain = refnx.analysis.load_chain("{}_chain.txt".format(anal_dir))

pchain = refnx.analysis.process_chain(global_objective, chain)

para_labels = [
    '_scale_{}_{}'.format(sp, cont[0]), '_bkg_{}_{}'.format(sp, cont[0]),
    '-d_h_{}'.format(sp), '-d_t_{}'.format(sp), '_rough_{}'.format(sp),
    '_scale_{}_{}'.format(sp, cont[1]), '_bkg_{}_{}'.format(sp, cont[1]),
    '_scale_{}_{}'.format(sp, cont[2]), '_bkg_{}_{}'.format(sp, cont[2]),
    '_scale_{}_{}'.format(sp, cont[3]), '_bkg_{}_{}'.format(sp, cont[3]),
    '_scale_{}_{}'.format(sp, cont[4]), '_bkg_{}_{}'.format(sp, cont[4]),
    '_scale_{}_{}'.format(sp, cont[5]), '_bkg_{}_{}'.format(sp, cont[5]),
    '_scale_{}_{}'.format(sp, cont[6]), '_bkg_{}_{}'.format(sp, cont[6])
]
Esempio n. 5
0
def getObjective(data, nLayers, bs_contrast_layer=None,
                 contrast_layer=None,
                 limits = None, doMCMC=False,
                 logpExtra=None, onlyStructure=False,
                 both=False, globalObjective=False):

    if globalObjective:
        if bs_contrast_layer is None:
            bs_contrast_layer = 6
        if contrast_layer is None:
            contrast_layer = 1
#         print("data, nLayers, bs_contrast_layer=None,\n contrast_layer=None,\nlimits = None, doMCMC=False,\nlogpExtra=None, onlyStructure=False,\nboth=False, globalObjective=False: ",
#                      data, nLayers, bs_contrast_layer,
#                      contrast_layer,
#                      limits, doMCMC,
#                      logpExtra, onlyStructure,
#                      both, globalObjective)

    air = SLD(0,name="air layer")
    airSlab = air(10,0)

    sio2 = SLD(10,name="bottem layer")
    sio2Slab = sio2(10,0)


    if limits is None:
        limits = [350,50,4,6]
    
#     maxThick = 350
#     lowerThick = 50
#     upperThick = maxThick - nLayers*lowerThick
#     lowerB = 4
#     upperB = 6

    maxThick = float(limits[0])
    lowerThick = limits[1]
    upperThick = maxThick - nLayers*lowerThick
    lowerB = limits[2]
    upperB = limits[3]

    if globalObjective:
        thick_contrast_layer=Parameter(maxThick/nLayers,
                                        "layer1 thickness")
        rough_contrast_layer=Parameter(0,
                                    "layer0/contrast roughness")
        sldcontrastA=SLD(5,name="contrast A layer")
        sldcontrastASlab= sldcontrastA(thick_contrast_layer,rough_contrast_layer)
        sldcontrastASlab.thick.setp(vary=True, bounds=(lowerThick,upperThick))
        sldcontrastASlab.sld.real.setp(vary=True, bounds=(lowerB,upperB))

        sldcontrastB=SLD(5,name="contrast B layer")
        sldcontrastBSlab = sldcontrastB(thick_contrast_layer,rough_contrast_layer)
        sldcontrastBSlab.thick.setp(vary=True, bounds=(lowerThick,upperThick))
        sldcontrastBSlab.sld.real.setp(vary=True, bounds=(lowerB,upperB))


    if nLayers>=1 and not globalObjective:
        sld1 = SLD(5,name="first layer")
        sld1Slab = sld1(maxThick/nLayers,0)
        sld1Slab.thick.setp(vary=True, bounds=(lowerThick,upperThick))
        sld1Slab.sld.real.setp(vary=True, bounds=(lowerB,upperB))

    if nLayers>=2:
        sld2 = SLD(5,name="second layer")
        sld2Slab = sld2(maxThick/nLayers,0)
        sld2Slab.thick.setp(vary=True, bounds=(lowerThick,upperThick))
        sld2Slab.sld.real.setp(vary=True, bounds=(lowerB,upperB))

    if nLayers>=3:
        sld3 = SLD(5,name="third layer")
        sld3Slab = sld3(maxThick/nLayers,0)
        sld3Slab.thick.setp(vary=True, bounds=(lowerThick,upperThick))
        sld3Slab.sld.real.setp(vary=True, bounds=(lowerB,upperB))

    if nLayers>=4:
        sld4 = SLD(5,name="forth layer")
        sld4Slab = sld4(maxThick/nLayers,0)
        sld4Slab.thick.setp(vary=True, bounds=(lowerThick,upperThick))
        sld4Slab.sld.real.setp(vary=True, bounds=(lowerB,upperB))

#     if nLayers>=1:
#         sld1Slab.thick.setp(vary=True, bounds=(lowerThick,upperThick))
#         sld1Slab.sld.real.setp(vary=True, bounds=(lowerB,upperB))

#     if nLayers>=2:
#         sld2Slab.thick.setp(vary=True, bounds=(lowerThick,upperThick))
#         sld2Slab.sld.real.setp(vary=True, bounds=(lowerB,upperB))

#     if nLayers>=3:
#         sld3Slab.thick.setp(vary=True, bounds=(lowerThick,upperThick))
#         sld3Slab.sld.real.setp(vary=True, bounds=(lowerB,upperB))

#     if nLayers>=4:
#         sld4Slab.thick.setp(vary=True, bounds=(lowerThick,upperThick))
#         sld4Slab.sld.real.setp(vary=True, bounds=(lowerB,upperB))

    if globalObjective and contrast_layer==1:
        if nLayers==1:
            structure1 = airSlab|sldcontrastASlab|sio2Slab
            structure2 = airSlab|sldcontrastBSlab|sio2Slab
        if nLayers==2:
            structure1 = airSlab|sldcontrastASlab|sld2Slab|sio2Slab
            structure2 = airSlab|sldcontrastBSlab|sld2Slab|sio2Slab
        if nLayers==3:
            structure1 = airSlab|sldcontrastASlab|sld2Slab|sld3Slab|sio2Slab
            structure2 = airSlab|sldcontrastBSlab|sld2Slab|sld3Slab|sio2Slab
        if nLayers==4:
            structure1 = airSlab|sldcontrastASlab|sld2Slab|sld3Slab|sld4Slab|sio2Slab
            structure2 = airSlab|sldcontrastBSlab|sld2Slab|sld3Slab|sld4Slab|sio2Slab
        if onlyStructure:
            returns = structure1,structure2
        elif both:
            model1 = ReflectModel(structure1, bkg=3e-6, dq=5.0)
            model1.scale.setp(bounds=(0.85, 1.2), vary=True)
            model1.bkg.setp(bounds=(1e-9, 9e-6), vary=True)
            objective1 = Objective(model1, data[0],
                      transform=Transform('logY'),
                      logp_extra=logpExtra)
            model2 = ReflectModel(structure2, bkg=3e-6, dq=5.0)
            model2.scale.setp(bounds=(0.85, 1.2), vary=True)
            model2.bkg.setp(bounds=(1e-9, 9e-6), vary=True)
            objective2 = Objective(model2, data[1],
                      transform=Transform('logY'),
                      logp_extra=logpExtra)
            returns = GlobalObjective([objective1, objective2]), structure1, structure2
            print("GlobalObjective and 2 structures")
        else:
            model1 = ReflectModel(structure1, bkg=3e-6, dq=5.0)
            model1.scale.setp(bounds=(0.85, 1.2), vary=True)
            model1.bkg.setp(bounds=(1e-9, 9e-6), vary=True)
            objective1 = Objective(model1, data[0],
                      transform=Transform('logY'),
                      logp_extra=logpExtra)
            model2 = ReflectModel(structure2, bkg=3e-6, dq=5.0)
            model2.scale.setp(bounds=(0.85, 1.2), vary=True)
            model2.bkg.setp(bounds=(1e-9, 9e-6), vary=True)
            objective2 = Objective(model2, data[1],
                      transform=Transform('logY'),
                      logp_extra=logpExtra)
            returns = GlobalObjective([objective1, objective2])

    elif not globalObjective:
        if nLayers==1:
            structure = airSlab|sld1Slab|sio2Slab
        if nLayers==2:
            structure = airSlab|sld1Slab|sld2Slab|sio2Slab
        if nLayers==3:
            structure = airSlab|sld1Slab|sld2Slab|sld3Slab|sio2Slab
        if nLayers==4:
            structure = airSlab|sld1Slab|sld2Slab|sld3Slab|sld4Slab|sio2Slab
        if onlyStructure:
            returns = structure
        elif both:
            model = ReflectModel(structure, bkg=3e-6, dq=5.0)
            objective = Objective(model, data,
                      transform=Transform('logY'),
                      logp_extra=logpExtra)
            returns = objective, structure
        else:
            model = ReflectModel(structure, bkg=3e-6, dq=5.0)
            objective = Objective(model, data, transform=Transform('logY'),logp_extra=logpExtra)
            returns = objective
    else:
        print("error contrast layer not at sld1Slab ie contrast_layer!=0")
#     print(returns)
    return returns
model_lipid3 = ReflectModel(structure_lipid3)
model_lipid3.scale.setp(vary=True, bounds=(0.005, 10))
model_lipid3.bkg.setp(dataset3.y[-1], vary=False)

model_lipid4 = ReflectModel(structure_lipid4)
model_lipid4.scale.setp(vary=True, bounds=(0.005, 10))
model_lipid4.bkg.setp(dataset4.y[-1], vary=False)

models = [model_lipid1, model_lipid2, model_lipid3, model_lipid4]

objective1 = Objective(model_lipid1, dataset1, transform=Transform('YX4'))
objective2 = Objective(model_lipid2, dataset2, transform=Transform('YX4'))
objective3 = Objective(model_lipid3, dataset3, transform=Transform('YX4'))
objective4 = Objective(model_lipid4, dataset4, transform=Transform('YX4'))

global_objective = GlobalObjective(
    [objective1, objective2, objective3, objective4])

# The chain is read in by refnx, and processed to assigned it to the global objective.

# In[8]:

chain = refnx.analysis.load_chain('{}/{}/chain.txt'.format(
    analysis_dir, lipid))

processed_chain = refnx.analysis.process_chain(global_objective, chain)

# The global objective is printed to check it is accurate.

# In[9]:

print(global_objective)
Esempio n. 7
0
for i in range(t):
    models.append(ReflectModel(structures[i]))
    models[i].scale.setp(vary=True, bounds=(0.005, 10))
    models[i].bkg.setp(datasets[i].y[-1], vary=False)

objectives = []
if neutron:
    t = len(cont)
else:
    t = sp.size
for i in range(t):
    objectives.append(
        Objective(models[i], datasets[i], transform=Transform("YX4")))

global_objective = GlobalObjective(objectives)

fitter = CurveFitter(global_objective)
np.random.seed(1)
res = fitter.fit("differential_evolution")

print(global_objective)

fitter.sample(200, random_state=1)
fitter.sampler.reset()
res = fitter.sample(
    1000,
    nthin=1,
    random_state=1,
    f="{}/{}_chain.txt".format(anal_dir, label),
)
Esempio n. 8
0
model_lipid4 = ReflectModel(structure_lipid4)
model_lipid4.scale.setp(vary=True, bounds=(0.005, 10))
model_lipid4.bkg.setp(dataset4.y[-1], vary=False)

models = [model_lipid1, model_lipid2, model_lipid3, model_lipid4]

# The global objective fitting object is defined and the fitting and MCMC performed.

# In[ ]:

objective1 = Objective(model_lipid1, dataset1, transform=Transform('YX4'))
objective2 = Objective(model_lipid2, dataset2, transform=Transform('YX4'))
objective3 = Objective(model_lipid3, dataset3, transform=Transform('YX4'))
objective4 = Objective(model_lipid4, dataset4, transform=Transform('YX4'))

global_objective = GlobalObjective(
    [objective1, objective2, objective3, objective4])

# ## Fitting
#
# The differential evolution algorithm is used to find optimal parameters, before the MCMC algorithm probes the parameter space for 1000 steps.

# In[ ]:

fitter = CurveFitter(global_objective)
res = fitter.fit('differential_evolution', seed=1)

fitter.sample(200, random_state=1)
fitter.sampler.reset()
res = fitter.sample(1000,
                    nthin=1,
                    random_state=1,
Esempio n. 9
0
model_lipid1 = ReflectModel(structure_lipid_1)
model_lipid1.scale.setp(vary=True, bounds=(0.005, 10))
model_lipid1.bkg.setp(dataset1.y[-2], vary=False)

model_lipid2 = ReflectModel(structure_lipid_2)
model_lipid2.scale.setp(vary=True, bounds=(0.005, 10))
model_lipid2.bkg.setp(dataset2.y[-2], vary=False)

models = [model_lipid1, model_lipid2]
structures = [structure_lipid_1, structure_lipid_2]

# building the global objective
objective_n1 = Objective(model_lipid1, dataset1, transform=Transform('YX4'))
objective_n2 = Objective(model_lipid2, dataset2, transform=Transform('YX4'))

global_objective = GlobalObjective([objective_n1, objective_n2])

# The chain is read in by refnx, and processed to assigned it to the global objective.

# In[ ]:

chain = refnx.analysis.load_chain('{}/{}/{}_chain_neutron.txt'.format(
    analysis_dir, lipid, sp))

processed_chain = refnx.analysis.process_chain(global_objective, chain)

# The global objective is printed to check it is accurate.

# In[ ]:

print(global_objective)
Esempio n. 10
0
model_lipid_1.scale.setp(vary=True, bounds=(0.005, 10))
model_lipid_1.bkg.setp(dataset_1.y[-2], vary=False)

model_lipid_2 = ReflectModel(structure_lipid_2)
model_lipid_2.scale.setp(vary=True, bounds=(0.005, 10))
model_lipid_2.bkg.setp(dataset_2.y[-2], vary=False)

# The global objective fitting object is defined and the fitting and MCMC performed.

# In[ ]:

# building the global objective
objective_n1 = Objective(model_lipid_1, dataset_1, transform=Transform('YX4'))
objective_n2 = Objective(model_lipid_2, dataset_2, transform=Transform('YX4'))

global_objective = GlobalObjective([objective_n1, objective_n2])

# ## Fitting
#
# The differential evolution algorithm is used to find optimal parameters, before the MCMC algorithm probes the parameter space for 1000 steps.

# In[ ]:

# A differential evolution algorithm is used to obtain an best fit
fitter = CurveFitter(global_objective)
# A seed is used to ensure reproduciblity
res = fitter.fit('differential_evolution', seed=1)
# The first 200*200 samples are binned
fitter.sample(200, random_state=1)
fitter.sampler.reset()
# The collection is across 5000*200 samples