def model(X,
          Y,
          learning_rate=0.05,
          num_iterations=100000,
          print_cost=True,
          lambd=0):
    grads = {}
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0], 50, 20, 1]
    #print(layers_dims)
    parameters = initialize_parameters(layers_dims)
    #print(parameters)
    for i in range(0, num_iterations):
        a3, cache = forward_propagation(X, parameters)
        cost = compute_cost_with_regularization(a3, Y, parameters, lambd)
        grads = backward_propagation_with_regularization(X, Y, cache, lambd)
        parameters = update_parameters(parameters, grads, learning_rate)
        if print_cost and i % 1000 == 0:
            print("Cost after iteration {}: {}".format(i, cost))
        if print_cost and i % 10 == 0:
            costs.append(cost)

    # plot the cost
    plt.plot(costs)
    plt.ylabel('cost')
    plt.xlabel('iterations (x1,000)')
    plt.title("Learning rate =" + str(learning_rate))
    plt.show()

    return parameters
Esempio n. 2
0
def model(X,
          Y,
          learning_rate=0.3,
          num_iterations=30000,
          print_cost=True,
          is_plot=True,
          lambd=0,
          keep_prob=1):
    grads = {}
    costs = []
    #params = {}
    m = X.shape[0]
    layer_dims = [X.shape[0], 20, 3, 1]
    # initialize parameters
    params = reg_utils.initialize_parameters(layer_dims)

    # Training
    for i in range(num_iterations):
        # Forward Prop
        if keep_prob == 1:
            a3, cache = reg_utils.forward_propagation(X, params)
        elif keep_prob < 1:
            a3, cache = forward_propagation_with_dropout(X, params, keep_prob)
        else:
            print("Wrong keep_prob value. Try again.")
            exit

        # Compute cost
        if lambd == 0:
            cost = reg_utils.compute_cost(a3, Y)
        else:
            cost = compute_cost_with_regularization(a3, Y, params, lambd)

        # Back prop
        if (lambd == 0 and keep_prob == 1):
            grads = reg_utils.backward_propagation(X, Y, cache)
        elif lambd != 0:
            grads = backward_propagation_with_regularization(
                X, Y, cache, lambd)
        elif keep_prob < 1:
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)

        # update parameters
        params = reg_utils.update_parameters(params, grads, learning_rate)

        # print cost
        if (i % 1000 == 0):
            costs.append(cost)
            if (print_cost and i % 10000) == 0:
                print("Iteration " + str(i) + ": " + str(cost))

    # Plot cost curve
    if is_plot:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('#iterations')
        plt.title('learning rate=' + str(learning_rate))
        plt.show()

    return params
Esempio n. 3
0
def model(X,
          Y,
          learning_rate=0.3,
          num_iterations=30000,
          print_cost=True,
          lambd=0,
          keep_prob=1):

    grads = {}
    costs = []  # to keep track of the cost
    m = X.shape[1]  # number of examples
    layers_dims = [X.shape[0], 20, 3, 1]

    # Initialize parameters dictionary.
    parameters = initialize_parameters(layers_dims)

    # Loop (gradient descent)
    for i in range(0, num_iterations):

        # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID.
        if keep_prob == 1:
            a3, cache = forward_propagation(X, parameters)
        elif keep_prob < 1:
            a3, cache = forward_propagation_with_dropout(
                X, parameters, keep_prob)
        # Cost function
        if lambd == 0:
            cost = compute_cost(a3, Y)
        else:
            cost = compute_cost_with_regularization(a3, Y, parameters, lambd)
        # Backward propagation.
        assert (lambd == 0 or keep_prob == 1
                )  # it is possible to use both L2 regularization and dropout,
        # but this assignment will only explore one at a time
        if lambd == 0 and keep_prob == 1:
            grads = backward_propagation(X, Y, cache)
        elif lambd != 0:
            grads = backward_propagation_with_regularization(
                X, Y, cache, lambd)
        elif keep_prob < 1:
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)

        # Update parameters.
        parameters = update_parameters(parameters, grads, learning_rate)

        # Print the loss every 10000 iterations
        if print_cost and i % 10000 == 0:
            print("Cost after iteration {}: {}".format(i, cost))
        if print_cost and i % 1000 == 0:
            costs.append(cost)

    # plot the cost
    plt.plot(costs)
    plt.ylabel('cost')
    plt.xlabel('iterations (x1,000)')
    plt.title("Learning rate =" + str(learning_rate))
    plt.show()

    return parameters
Esempio n. 4
0
def model(X,Y,learning_rate=0.3,num_iterations=30000,print_cost=True,is_plot=True,lambd=0,keep_prob=1):
    """
        实现一个三层神经网络:LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID
    参数:
        X -输入的数据,维度(2,训练/测试的数量)
        Y -标签[0(蓝色)|1(红色)],维度为(1,对应输入数据的标签)
        lambd -正则化的超参数,实数
        keep_prob 随机删除节点的概率
    返回:
        parameters -学习后的参数
    """
    grads={}
    costs=[]
    m=X.shape[0]
    layers_dims=[X.shape[0],20,3,1]

    parameters=reg_utils.initialize_parameters(layers_dims)

    for i in range(0,num_iterations):
        #forward propagation
        if keep_prob==1:
            a3,cache=reg_utils.forward_propagation(X,parameters)
        elif keep_prob<1:
            a3,cache=forward_propagation_with_dropout(X,parameters,keep_prob)
        else:
            print("keep_prob error,quit!")
            exit
        
        if lambd==0:
            cost=reg_utils.compute_cost(a3,Y)
        else:
            cost=compute_cost_with_regularization(a3,Y,parameters,lambd)
        
        #backward propagation
        assert(lambd==0 or keep_prob==1)
        if(lambd==0 and keep_prob==1):
            grads=reg_utils.backward_propagation(X,Y,cache)
        elif lambd!=0:
            grads=backward_propagation_with_regularization(X,Y,cache,lambd)
        elif keep_prob<1:
            grads=backward_propagation_with_dropout(X,Y,cache,keep_prob)

        parameters=reg_utils.update_parameters(parameters,grads,learning_rate)
        
        if i%1000==0:# print cost
            costs.append(cost)
            if(print_cost and i%10000==0):
                print("number time"+str(i)+" cost is "+str(cost))

    if is_plot:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('iterations(*1000)')
        plt.title('Learing rate='+str(learning_rate))
        plt.show()
    
    return parameters 
Esempio n. 5
0
def model(X,
          Y,
          learning_rate=0.3,
          num_iterations=30000,
          keep_prob=1.0,
          lambd=0.0,
          print_cost=True):
    grads = {}
    costs = []  # to keep track of the cost
    layers_dims = [X.shape[0], 20, 3, 1]

    # Initialize parameters dictionary.
    parameters = initialize_parameters(layers_dims)

    for i in range(0, num_iterations):
        # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID.
        cost = None

        if lambd == 0 and keep_prob == 1:
            a3, cache = forward_propagation(X, parameters)
            cost = compute_cost(a3, Y, parameters)
            grads = backward_propagation(X, Y, cache)
        elif lambd != 0 and keep_prob == 1:
            a3, cache = forward_propagation(X, parameters)
            cost = compute_cost(a3, Y, parameters, lambd)
            grads = backward_propagation(X, Y, cache, lambd=lambd)
        elif lambd == 0 and keep_prob < 1:
            a3, cache = forward_propagation(X, parameters, keep_prob=keep_prob)
            cost = compute_cost(a3, Y, parameters)
            grads = backward_propagation(X, Y, cache, keep_prob=keep_prob)
        elif lambd != 0 and keep_prob < 1:
            a3, cache = forward_propagation(X, parameters)
            cost = compute_cost(a3, Y, parameters, lambd)
            grads = backward_propagation(X,
                                         Y,
                                         cache,
                                         lambd=lambd,
                                         keep_prob=keep_prob)

        # Update parameters.
        parameters = update_parameters(parameters, grads, learning_rate)

        # Print the loss every 10000 iterations
        if print_cost and i % 10000 == 0:
            print("Cost after iteration {}: {}".format(i, cost))
        if print_cost and i % 1000 == 0:
            costs.append(cost)

    # plot the cost
    # plt.plot(costs)
    # plt.ylabel('cost')
    # plt.xlabel('iterations (x1,000)')
    # plt.title("Learning rate =" + str(learning_rate))
    # plt.show()

    return parameters
Esempio n. 6
0
def model(X, Y, learning_rate = 0.3, num_iterations = 30000, print_cost = True, lambd = 0, keep_prob = 1):
    """
    Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID.
    
    Arguments:
    X -- input data, of shape (input size, number of examples)
    Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (output size, number of examples)
    learning_rate -- learning rate of the optimization
    num_iterations -- number of iterations of the optimization loop
    print_cost -- If True, print the cost every 10000 iterations
    lambd -- regularization hyperparameter, scalar
    keep_prob - probability of keeping a neuron active during drop-out, scalar.
    
    Returns:
    parameters -- parameters learned by the model. They can then be used to predict.
    """
        
    grads = {}
    layers_dims = [X.shape[0], 20, 3, 1]
    
    parameters = initialize_parameters(layers_dims)
    for i in range(0, num_iterations):
        if keep_prob == 1:
            a3, cache = forward_propagation(X, parameters)
        elif keep_prob < 1:
            a3, cache = forward_propagation_with_dropout(X, parameters, keep_prob)
        
        if lambd == 0:
            cost = compute_cost(a3, Y)
        else:
            cost = compute_cost_with_regularization(a3, Y, parameters, lambd)
            
        if lambd == 0 and keep_prob == 1:
            grads = backward_propagation(X, Y, cache)
        elif lambd != 0:
            grads = backward_propagation_with_regularization(X, Y, cache, lambd)
        elif keep_prob < 1:
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)
        
        parameters = update_parameters(parameters, grads, learning_rate)
        
        if print_cost and i % 10000 == 0:
            print("Cost after iteration {}: {}".format(i, cost))
        if print_cost and i % 1000 == 0:
            costs.append(cost)
    
    plt.plot(costs)
    plt.ylabel('cost')
    plt.xlabel('iterations (x1,000)')
    plt.title("Learning rate =" + str(learning_rate))
    plt.show()
    
    return parameters
Esempio n. 7
0
def model(X,
          Y,
          learning_rate=0.3,
          num_iterations=30000,
          print_cost=True,
          is_plot=True,
          lambd=0,
          keep_prob=1):
    losses = []
    layers_dims = [X.shape[0], 20, 3, 1]

    # 选择初始化参数的类型
    parameters = reg_utils.initialize_parameters(layers_dims)
    for i in range(num_iterations):
        # 前向传播
        if keep_prob == 1:
            A3, cache = reg_utils.forward_propagation(X, parameters)
        else:
            A3, cache = regulation.forward_propagation_drop(
                X, parameters, keep_prob)

        # 计算Loss
        if lambd == 0:
            loss = reg_utils.compute_cost(A3, Y)
        else:
            loss = regulation.compute_cost_l2(A3, Y, parameters, lambd)

        # 反向传播
        if keep_prob == 1 and lambd == 0:
            gradients = reg_utils.backward_propagation(X, Y, cache)
        elif keep_prob != 1:
            gradients = regulation.backward_propagation_drop(
                X, Y, cache, keep_prob)
        elif lambd != 0:
            gradients = regulation.backward_propagation_l2(X, Y, cache, lambd)
        # 更新权重
        parameters = reg_utils.update_parameters(parameters, gradients,
                                                 learning_rate)
        if i % 1000 == 0:
            losses.append(loss)
            # 打印成本
            if (print_cost and i % 10000 == 0):
                print("第" + str(i) + "次迭代,成本值为:" + str(loss))
    # 学习完毕,绘制成本曲线
    if is_plot:
        plt.plot(losses)
        plt.ylabel('cost')
        plt.xlabel('iterations (per hundreds)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()

    # 返回学习完毕后的参数
    return parameters
Esempio n. 8
0
def model(X,
          Y,
          learning_rate=0.3,
          num_iterations=30000,
          print_cost=True,
          lambd=0,
          keep_prob=1):
    grads = {}
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0], 20, 3, 1]

    parameters = initialize_parameters(layers_dims)

    for i in range(0, num_iterations):
        if keep_prob == 1:
            a3, cache = forward_propagation(X, parameters)
        elif keep_prob < 1:
            a3, cache = forward_propagation_with_dropout(
                X, parameters, keep_prob)

        if lambd == 0:
            cost = compute_cost(a3, Y)
        else:
            cost = compute_cost_with_regularization(a3, Y, parameters, lambd)

        assert (lambd == 0 or keep_prob == 1)

        if lambd == 0 and keep_prob == 1:
            grads = backward_propagation(X, Y, cache)
        elif lambd != 0:
            grads = backward_propagation_with_regularization(
                X, Y, cache, lambd)
        elif keep_prob < 1:
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)

        parameters = update_parameters(parameters, grads, learning_rate)

        if print_cost and i % 10000 == 0:
            print("Cost after iteration {}: {}".format(i, cost))
        if print_cost and i % 1000 == 0:
            costs.append(cost)

    plt.plot(costs)
    plt.ylabel('cost')
    plt.xlabel('iterations (x1,000)')
    plt.title("Learning rate =" + str(learning_rate))
    plt.show()

    return parameters
Esempio n. 9
0
def model(X,
          Y,
          layer_dims,
          keep_prob,
          lamda,
          learning_rate,
          num_iteration,
          norm=False):
    parameters = initialize_parameters(layer_dims)
    if norm == False and keep_prob == 1:
        for i in range(num_iteration):
            AL, cache = forward_propagation(X, parameters)
            grads = backward_propagation(X, Y, cache)
            parameters = update_parameters(parameters, grads, learning_rate)
            if i % 1000 == 0:
                cost = compute_cost(AL, Y)
                print(f'cost after {i} iteration:{cost}')
        return parameters
    if norm == False and keep_prob != 1:
        for i in range(num_iteration):
            AL, cache = drop_forward(X, parameters, keep_prob)
            grads = back_dropout(Y, AL, cache, keep_prob)
            parameters = update_parameters(parameters, grads, learning_rate)
            if i % 1000 == 0:
                cost = compute_cost(AL, Y)
                print(f'cost after{i} iterations:{cost}')
        return parameters
    if norm == True and keep_prob == 1:
        for i in range(num_iteration):
            AL, cache = forward_propagation(X, parameters)
            grads = l2_back_propagation(X, Y, AL, cache, lamda)
            parameters = update_parameters(parameters, grads, learning_rate)
            if i % 1000 == 0:
                cost = compute_l2_cost(AL, Y, parameters, lamda)
                print(f'cost after {i} iteration:{cost}')
        return parameters
def model(X,Y,learning_rate=0.3,num_iterations=30000,print_cost=True,is_plot=True,lambd=0,keep_prob=1):
    grads={}
    costs=[]
    m=X.shape[1]
    layers_dims=[X.shape[0],20,3,1]  # 每一层的维度

    parameters=reg_utils.initialize_parameters(layers_dims)
    for i in range(0,num_iterations):
        # 前向传播,计算A3
        if keep_prob==1:  # 执行正常的前向传播
            a3,cache=reg_utils.forward_propagation(X,parameters)
        elif keep_prob<1: # 执行dropout,随机失活结点
            a3,cache=forward_propagation_with_dropout(X,parameters,keep_prob)
        else :
            print("keep_prob参数错误,程序退出")
            exit

        # 计算Cost
        if lambd==0: # 不使用正则化
            cost=reg_utils.compute_cost(a3,Y)
        else: # 使用L2正则化
            cost=compute_cost_with_regularization(a3,Y,parameters,lambd)
        assert(lambd==0 or keep_prob==1)

        # 反向传播,计算梯度
        if (lambd==0 and keep_prob==1): # 不使用L2正则化和Dropout
            grads=reg_utils.backward_propagation(X,Y,cache)
        elif lambd!=0:# 使用L2正则化,不使用随机删除结点
            grads=backward_propagation_with_regularization(X,Y,cache,lambd)
        elif keep_prob<1:  # 使用dropout随机删除结点,不使用L2正则化
            grads=backward_propagation_with_dropout(X,Y,cache,keep_prob)
        # 更新参数
        parameters=reg_utils.update_parameters(parameters,grads,learning_rate)

        if i % 1000==0:
            costs.append(cost)
            if print_cost:
                print("第"+str(i)+"次迭代,成本值为"+str(cost))
    if is_plot:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('iteration (per 100)')
        plt.title('learning_rate='+str(learning_rate))
        plt.show()

    return parameters
Esempio n. 11
0
def model(X, Y, learning_rate = 0.3, num_iterations = 30000, print_cost = True, lambd = 0, keep_prob = 1):    
    """    Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR>SIGMOID.        Arguments:    X -- input data, of shape (input size, number of examples)    Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (output size, number of examples)    learning_rate -- learning rate of the optimization    num_iterations -- number of iterations of the optimization loop    print_cost -- If True, print the cost every 10000 iterations    lambd -- regularization hyperparameter, scalar
    lambd -- regularization hyperparameter, scalar    keep_prob - probability of keeping a neuron active during drop-out, scalar.        Returns:    parameters -- parameters learned by the model. They can then be used to pred ict.    """            
    
    grads = {}    
    costs = []  # to keep track of the cost    
    m = X.shape[1]    # number of examples    
    layers_dims = [X.shape[0], 20, 3, 1]        # Initialize parameters dictionary.    
    parameters = initialize_parameters(layers_dims)    # Loop (gradient descent)    
    
    for i in range(0, num_iterations):        # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIG MOID.        
        if keep_prob == 1:            
            a3, cache = forward_propagation(X, parameters)        
        elif keep_prob < 1:            
            a3, cache = forward_propagation_with_dropout(X, parameters, keep_prob)                
        
        # Cost function        
        if lambd == 0:            
            cost = compute_cost(a3, Y)        
        else:            
            cost = compute_cost_with_regularization(a3, Y, parameters, lambd)                    
        
        # Backward propagation.        
        assert(lambd==0 or keep_prob==1)    # it is possible to use both L2 regu larization and dropout,                                             
        # but this assignment will only expl ore one at a time        
        if lambd == 0 and keep_prob == 1:            
            grads = backward_propagation(X, Y, cache)        
        elif lambd != 0:            
            grads = backward_propagation_with_regularization(X, Y, cache, lambd)        
        elif keep_prob < 1:            
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)                # Update parameters.        
            
        parameters = update_parameters(parameters, grads, learning_rate)                
        
        # Print the loss every 10000 iterations        
        if print_cost and i % 10000 == 0:            
            print("Cost after iteration {}: {}".format(i, cost))        
        if print_cost and i % 1000 == 0:            
            costs.append(cost)    
    # plot the cost    plt.plot(costs)    
    plt.ylabel('cost')    
    plt.xlabel('iterations (x1,000)')    
    plt.title("Learning rate =" + str(learning_rate))    
    plt.show()
        
    return parameters
Esempio n. 12
0
def model_reg(X,
              Y,
              alpha=0.05,
              loops=10000,
              lambd=0,
              keep_prob=1,
              init_method='he'):
    grads = {}
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0], 20, 3, 1]
    # inintial params
    if init_method == 'zeros':
        params = init_zeros(layers_dims)
    elif init_method == 'random':
        params = init_random(layers_dims)
    elif init_method == 'he':
        params = init_he(layers_dims)
    else:
        print('Error: unexcepted init_method!')
    # start train
    for i in range(loops):
        a3, cache = forward_propagate_with_reg(X, params, keep_prob=keep_prob)
        cost = compute_loss_with_reg(a3, Y, params, lambd=lambd)
        costs.append(cost)
        grads = backward_propagate_with_reg(X,
                                            Y,
                                            cache,
                                            lambd=lambd,
                                            keep_prob=keep_prob)
        params = reg_utils.update_parameters(params, grads, alpha)
        if (i + 1) % 100 == 0:
            print(f'No.{i+1} iteration\'s loss: {cost}')
    plt.plot(costs)
    plt.xlabel('step')
    plt.ylabel('loss')
    plt.title('loss circle')
    plt.show()
    return params
def model(X,
          Y,
          learning_rate=0.3,
          num_iterations=30000,
          print_cost=True,
          lambd=0,
          keep_prob=1):

    grads = {}
    costs = []

    m = X.shape[1]

    layer_dims = [X.shape[0], 20, 3, 1]

    parameters = initialize_parameters(layer_dims)

    for i in range(num_iterations):

        if keep_prob == 1:

            A3, cache = forward_propagation(X, parameters)

        elif keep_prob < 1:

            A3, cache = forward_propagation_with_dropout(
                X, parameters, keep_prob)

        if lambd == 0:

            cost = compute_cost(A3, Y)

        else:

            cost = compute_cost_with_regulations(A3, Y, parameters, lambd)

        assert (lambd == 0 or keep_prob == 1)

        if lambd == 0 and keep_prob == 1:

            grads = backward_propagation(X, Y, cache)

        elif lambd != 0:

            grads = backward_propagation_with_regularization(
                X, Y, cache, lambd)

        elif keep_prob < 1:

            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)

        parameters = update_parameters(parameters, grads, learning_rate)

        if print_cost and i % 1000 == 0:

            print("Cost After iterations {} : {}".format(i, cost))

            costs.append(cost)

    plt.plot(costs)
    plt.title("Learning rate = " + str(learning_rate))
    plt.ylabel("Cost")
    plt.xlabel("iterations(x1,000)")
    #plt.show()

    plt.savefig('/home/guanlingh/local2server/homework6/image/h6-2.jpg')

    return parameters
Esempio n. 14
0
def model(X, Y, learning_rate = 0.3, num_iterations = 30000, print_cost = True, lambd = 0, keep_prob = 1):
    """
    Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID.
    
    Arguments:
    X -- input data, of shape (input size, number of examples)
    Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (output size, number of examples)
    learning_rate -- learning rate of the optimization
    num_iterations -- number of iterations of the optimization loop
    print_cost -- If True, print the cost every 10000 iterations
    lambd -- regularization hyperparameter, scalar
    keep_prob - probability of keeping a neuron active during drop-out, scalar.
    
    Returns:
    parameters -- parameters learned by the model. They can then be used to predict.
    """
        
    grads = {}
    costs = []                            # to keep track of the cost
    m = X.shape[1]                        # number of examples
    layers_dims = [X.shape[0], 20, 3, 1]
    
    # Initialize parameters dictionary.
    parameters = initialize_parameters(layers_dims)

    # Loop (gradient descent)

    for i in range(0, num_iterations):

        # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID.
        if keep_prob == 1:
            a3, cache = forward_propagation(X, parameters)
        elif keep_prob < 1:
            a3, cache = forward_propagation_with_dropout(X, parameters, keep_prob)
        
        # Cost function
        if lambd == 0:
            cost = compute_cost(a3, Y)
        else:
            cost = compute_cost_with_regularization(a3, Y, parameters, lambd)
            
        # Backward propagation.
        assert(lambd==0 or keep_prob==1)    # it is possible to use both L2 regularization and dropout, 
                                            # but this assignment will only explore one at a time
        if lambd == 0 and keep_prob == 1:
            grads = backward_propagation(X, Y, cache)
        elif lambd != 0:
            grads = backward_propagation_with_regularization(X, Y, cache, lambd)
        elif keep_prob < 1:
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)
        
        # Update parameters.
        parameters = update_parameters(parameters, grads, learning_rate)
        
        # Print the loss every 10000 iterations
        if print_cost and i % 10000 == 0:
            print("Cost after iteration {}: {}".format(i, cost))
        if print_cost and i % 1000 == 0:
            costs.append(cost)
    
    # plot the cost
    plt.plot(costs)
    plt.ylabel('cost')
    plt.xlabel('iterations (x1,000)')
    plt.title("Learning rate =" + str(learning_rate))
    plt.show()
    
    return parameters
Esempio n. 15
0
def model(X,
          Y,
          learning_rate=0.3,
          num_iterations=30000,
          print_cost=True,
          is_plot=True,
          lambd=0,
          keep_prob=1):
    '''
    实现一个三层的神经网络:linear->relu->linear->relu->linear->sigmoid
    :param X: 输入的数据,维度为(2,要训练/测试的数量)
    :param Y: 标签,[0(蓝色)|1(红色)],维度为(1,对应的是输入的数据的标签)
    :param learing_rate: 学习速率
    :param num_iterations: 迭代次数
    :param print_cost: 是否打印成本值
    :param lambd: 正则化的超参数,实数
    :param keep_prob: 随机删除节点的概率
    :return: 
    parameters-学习后的参数
    '''
    grads = {}
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0], 20, 3, 1]

    #初始化参数
    parameters = reg_utils.initialize_parameters(layers_dims)

    #开始学习
    for i in range(0, num_iterations):
        #前向传播
        ##是否删除随机节点
        if keep_prob == 1:
            ###不删除随机节点
            a3, cache = reg_utils.forward_propagation(X, parameters)
        elif keep_prob < 1:
            ###随即删除节点
            a3, cache = forward_propagation_with_dropout(
                X, parameters, keep_prob)
        else:
            print('keep_prob参数错误,程序退出.')
            exit

        #计算成本
        ##是否使用二范数
        if lambd == 0:
            ###不使用L2正则化
            cost = reg_utils.compute_cost(a3, Y)
        else:
            ###使用L2正则化
            cost = compute_cost_with_regularization(a3, Y, parameters, lambd)

        ##反向传播
        ##可以同时使用L2正则化和随机删除节点,但本次实验不同时使用
        assert (lambd == 0 or keep_prob == 1)

        ##两个参数的使用情况
        if (lambd == 0 and keep_prob == 1):
            ###不适用L2正则化和不使用随即删除节点
            grads = reg_utils.backward_propagation(X, Y, cache)
        elif lambd != 0:
            ###使用L2正则化,不使用随即删除节点
            grads = backward_propagation_with_regularization(
                X, Y, cache, lambd)
        elif keep_prob < 1:
            ###使用随即删除节点,不使用L2正则化
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)

        #更新参数
        parameters = reg_utils.update_parameters(parameters, grads,
                                                 learning_rate)

        #记录并打印成本
        if i % 1000 == 0:
            ##记录成本
            costs.append(cost)
            if (print_cost and i % 10000 == 0):
                #打印成本
                print('第' + str(i) + '次迭代,成本值为:' + str(cost))

    #是否绘制成本曲线图
    if is_plot:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('iterations(x1,000)')
        plt.title('Learning rate = ' + str(learning_rate))
        plt.show()

    #返回学习后的参数
    return parameters
def model(X,Y,learning_rate = 0.3,num_iterations = 30000,print_cost = True,is_plot = True,lambd = 0,keep_prob = 1):
    '''
    实现一个三层的神经网络:linear->relu->linear->relu->linear->sigmoid
    :param X: 输入的数据,维度为(2,要训练/测试的数量)
    :param Y: 标签,[0(蓝色)|1(红色)],维度为(1,对应的是输入的数据的标签)
    :param learing_rate: 学习速率
    :param num_iterations: 迭代次数
    :param print_cost: 是否打印成本值
    :param lambd: 正则化的超参数,实数
    :param keep_prob: 随机删除节点的概率
    :return: 
    parameters-学习后的参数
    '''
    grads = {}
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0],20,3,1]

    #初始化参数
    parameters = reg_utils.initialize_parameters(layers_dims)

    #开始学习
    for i in range(0,num_iterations):
        #前向传播
        ##是否删除随机节点
        if keep_prob == 1:
            ###不删除随机节点
            a3,cache = reg_utils.forward_propagation(X,parameters)
        elif keep_prob<1:
            ###随即删除节点
            a3 , cache = forward_propagation_with_dropout(X,parameters,keep_prob)
        else:
            print('keep_prob参数错误,程序退出.')
            exit

        #计算成本
        ##是否使用二范数
        if lambd == 0:
            ###不使用L2正则化
            cost = reg_utils.compute_cost(a3,Y)
        else:
            ###使用L2正则化
            cost = compute_cost_with_regularization(a3,Y,parameters,lambd)

        ##反向传播
        ##可以同时使用L2正则化和随机删除节点,但本次实验不同时使用
        assert(lambd == 0 or keep_prob == 1)

        ##两个参数的使用情况
        if(lambd == 0 and keep_prob == 1):
            ###不适用L2正则化和不使用随即删除节点
            grads = reg_utils.backward_propagation(X,Y,cache)
        elif lambd!=0:
            ###使用L2正则化,不使用随即删除节点
            grads = backward_propagation_with_regularization(X,Y,cache,lambd)
        elif keep_prob<1:
            ###使用随即删除节点,不使用L2正则化
            grads = backward_propagation_with_dropout(X,Y,cache,keep_prob)

        #更新参数
        parameters = reg_utils.update_parameters(parameters,grads,learning_rate)

        #记录并打印成本
        if i%1000 == 0:
            ##记录成本
            costs.append(cost)
            if(print_cost and i%10000==0):
                #打印成本
                print('第'+str(i)+'次迭代,成本值为:'+str(cost))

    #是否绘制成本曲线图
    if is_plot:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('iterations(x1,000)')
        plt.title('Learning rate = '+str(learning_rate))
        plt.show()

    #返回学习后的参数
    return parameters
Esempio n. 17
0
def L_layer_model(X,
                  Y,
                  layers_dims,
                  learning_rate=0.0075,
                  num_iterations=3000,
                  print_cost=False):  #lr was 0.009
    """
    Implements a L-layer neural network: [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID.
    
    Arguments:
    X -- data, numpy array of shape (number of examples, num_px * num_px * 3)
    Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
    layers_dims -- list containing the input size and each layer size, of length (number of layers + 1).
    learning_rate -- learning rate of the gradient descent update rule
    num_iterations -- number of iterations of the optimization loop
    print_cost -- if True, it prints the cost every 100 steps
    
    Returns
    parameters -- parameters learnt by the model. They can then be used to predict.
    """

    np.random.seed(1)
    costs = []  # keep track of cost

    # Parameters initialization.
    ### START CODE HERE ###
    parameters = initialize_parameters_deep(layers_dims)
    ### END CODE HERE ###

    # Loop (gradient descent)
    for i in range(0, num_iterations):

        # Forward propagation: [LINEAR -> RELU]*(L-1) -> LINEAR -> SIGMOID.
        ### START CODE HERE ### (~ 1 line of code)
        AL, caches = L_model_forward(X, parameters)
        ### END CODE HERE ###

        # Compute cost.
        ### START CODE HERE ### (~ 1 line of code)
        cost = compute_cost(AL, Y)
        ### END CODE HERE ###

        # Backward propagation.
        ### START CODE HERE ### (~ 1 line of code)
        grads = L_model_backward(AL, Y, caches)
        ### END CODE HERE ###

        # Update parameters.
        ### START CODE HERE ### (~ 1 line of code)
        parameters = update_parameters(parameters, grads, learning_rate)
        ### END CODE HERE ###

        # Print the cost every 100 training example
        if print_cost and i % 1 == 0:
            print("Cost after iteration %i: %f" % (i, cost))
        if print_cost and i % 100 == 0:
            costs.append(cost)

    # plot the cost
    plt.plot(np.squeeze(costs))
    plt.ylabel('cost')
    plt.xlabel('iterations (per tens)')
    plt.title("Learning rate =" + str(learning_rate))
    plt.show()

    return parameters
            cost = compute_cost(a3, Y)
        else:
            cost = compute_cost_with_regularization(a3, Y, parameters, lambd)

        # Backward propagation.
        assert(lambd==0 or keep_prob==1)    # it is possible to use both L2 regularization and dropout,
                                            # but this assignment will only explore one at a time
        if lambd == 0 and keep_prob == 1:
            grads = backward_propagation(X, Y, cache)
        elif lambd != 0:
            grads = backward_propagation_with_regularization(X, Y, cache, lambd)
        elif keep_prob < 1:
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)

        # Update parameters.
        parameters = update_parameters(parameters, grads, learning_rate)

        # Print the loss every 10000 iterations
        if print_cost and i % 10000 == 0:
            print("Cost after iteration {}: {}".format(i, cost))
        if print_cost and i % 1000 == 0:
            costs.append(cost)

    # plot the cost
    plt.plot(costs)
    plt.ylabel('cost')
    plt.xlabel('iterations (x1,000)')
    plt.title("Learning rate =" + str(learning_rate))
    plt.show()

    return parameters
Esempio n. 19
0
def model(X,
          Y,
          learning_rate=0.3,
          num_iterations=30000,
          print_cost=True,
          lambd=0,
          keep_prob=1):
    """
    实现一个三层神经网络模型: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID.
    可以:-- 不使用正则化
          -- 使用 L2 正则化
          -- 使用 dropout 正则化

    :param X: 输入数据, of shape (input size, number of examples)
    :param Y: 正确的标签向量 (1 for blue dot / 0 for red dot), of shape (output size, number of examples)
    :param learning_rate: 优化的学习率
    :param num_iterations: 优化循环的迭代次数
    :param print_cost: If True, print the cost every 10000 iterations
    :param lambd: 正则化的超参数 λ
    :param keep_prob: drop-out 正则化中随机保留节点的概率
    
    Returns:
    parameters -- 神经网络模型学习得到的参数,可以用来预测
    """

    grads = {}
    costs = []  # to keep track of the cost
    m = X.shape[1]  # number of examples
    layers_dims = [X.shape[0], 20, 3, 1]

    # 初始化参数字典
    parameters = initialize_parameters(layers_dims)

    # 学习循环(梯度下降)
    for i in range(0, num_iterations):

        # 前向传播: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID.
        # 不使用 dropout 正则化
        if keep_prob == 1:
            a3, cache = forward_propagation(X, parameters)
        # 使用 dropout 正则化
        elif keep_prob < 1:
            a3, cache = forward_propagation_with_dropout(
                X, parameters, keep_prob)

        # 计算 cost
        # 不使用 L2 正则化
        if lambd == 0:
            cost = compute_cost(a3, Y)
        # 使用 L2 正则化
        else:
            cost = compute_cost_with_regularization(a3, Y, parameters, lambd)

        # 后向传播
        assert (lambd == 0 or keep_prob == 1
                )  # 可以同时使用 L2 正则化和 dropout, 但是本程序只使用其中一个或不使用正则化
        # 不使用正则化
        if lambd == 0 and keep_prob == 1:
            grads = backward_propagation(X, Y, cache)
        # 使用 L2 正则化
        elif lambd != 0:
            grads = backward_propagation_with_regularization(
                X, Y, cache, lambd)
        # 使用 dropout 正则化
        elif keep_prob < 1:
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)

        # 更新参数
        parameters = update_parameters(parameters, grads, learning_rate)

        # Print the loss every 10000 iterations
        if print_cost and i % 10000 == 0:
            print("Cost after iteration {}: {}".format(i, cost))
        if print_cost and i % 1000 == 0:
            costs.append(cost)

    # 绘制 cost 变化曲线图
    plt.plot(costs)
    plt.ylabel('cost')
    plt.xlabel('iterations (x1,000)')
    plt.title("Learning rate =" + str(learning_rate))
    plt.show()

    return parameters
def model(X,
          Y,
          learning_rate=0.3,
          num_iterations=30000,
          print_cost=True,
          lambd=0,
          keep_prob=1):
    """
    implements a three layer neural network:
        linear -> relu -> linear -> relu -> linear -> sigmoid
        
    arguments:
        X -- input data, shape(input size,number of examples)
        Y -- true label vector, shape(output size,number of examples)
        learning_rate -- learn rate of the optimization
        num_iterations -- number of iterations of the optimization loop
        print_cost -- if true, print the cost every 10000 iterations
        lambd -- regularization hhyperparameter
        keep_prob -- probability of keeping a neuron activa during drop-out
        
    returns:
        parameters -- parameters learned by the model, they can then be used to predict
    """
    grads = {}
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0], 20, 3, 1]

    #initialize parameters dictionary
    parameters = initialize_parameters(layers_dims)

    #loop
    for i in range(0, num_iterations):
        #forward
        if keep_prob == 1:
            a3, cache = forward_propagation(X, parameters)
        elif keep_prob < 1:
            a3, cache = forward_propagation_with_dropout(
                X, parameters, keep_prob)

        #cost function
        if lambd == 0:
            cost = compute_cost(a3, Y)
        else:
            cost = compute_cost_with_regularization(a3, Y, parameters, lambd)

        #
        assert (lambd == 0 or keep_prob == 1)

        if lambd == 0 and keep_prob == 1:
            grads = backward_propagation(X, Y, cache)
        elif lambd != 0:
            grads = backward_propagation_with_regularization(
                X, Y, cache, lambd)
        elif keep_prob < 1:
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)

        #update parameters
        parameters = update_parameters(parameters, grads, learning_rate)

        #print the loss every 1000 iterations
        if print_cost and i % 10000 == 0:
            print("Cost after iteration {}: {}".format(i, cost))
        if print_cost and i % 100 == 0:
            costs.append(cost)

    #plot the cost
    plt.figure(2)
    plt.plot(costs)
    plt.ylabel('cost')
    plt.xlabel('iterations (x1,000)')
    plt.title('learning rate = ' + str(learning_rate))
    plt.show()

    return parameters
Esempio n. 21
0
def model(X, Y, learning_rate=0.3, num_iterations=30000, print_cost=True, is_plot=True, lambd=0, keep_prob=1):
    """
    实现一个三层的神经网络:LINEAR ->RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID

    参数:
        X - 输入的数据,维度为(2, 要训练/测试的数量)
        Y - 标签,【0(蓝色) | 1(红色)】,维度为(1,对应的是输入的数据的标签)
        learning_rate - 学习速率
        num_iterations - 迭代的次数
        print_cost - 是否打印成本值,每迭代10000次打印一次,但是每1000次记录一个成本值
        is_polt - 是否绘制梯度下降的曲线图
        lambd - 正则化的超参数,实数
        keep_prob - 随机删除节点的概率
    返回
        parameters - 学习后的参数
    """
    grads = {}
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0], 20, 3, 1]

    # 初始化参数
    parameters = reg_utils.initialize_parameters(layers_dims)

    # 开始学习
    for i in range(0, num_iterations):
        # 前向传播
        ##是否随机删除节点
        if keep_prob == 1:
            ###不随机删除节点
            a3, cache = reg_utils.forward_propagation(X, parameters)
        elif keep_prob < 1:
            ###随机删除节点
            a3, cache = reg_utils.forward_propagation_with_dropout(X, parameters, keep_prob)
        else:
            print("keep_prob参数错误!程序退出。")
            exit

        # 计算成本
        ## 是否使用二范数
        if lambd == 0:
            ###不使用L2正则化
            cost = reg_utils.compute_cost(a3, Y)
        else:
            ###使用L2正则化
            cost = reg_utils.compute_cost_with_regularization(a3, Y, parameters, lambd)

        # 反向传播
        ##可以同时使用L2正则化和随机删除节点,但是本次实验不同时使用。
        assert (lambd == 0 or keep_prob == 1)

        ##两个参数的使用情况
        if (lambd == 0 and keep_prob == 1):
            ### 不使用L2正则化和不使用随机删除节点
            grads = reg_utils.backward_propagation(X, Y, cache)
        elif lambd != 0:
            ### 使用L2正则化,不使用随机删除节点
            grads = reg_utils.backward_propagation_with_regularization(X, Y, cache, lambd)
        elif keep_prob < 1:
            ### 使用随机删除节点,不使用L2正则化
            grads =reg_utils. backward_propagation_with_dropout(X, Y, cache, keep_prob)

        # 更新参数
        parameters = reg_utils.update_parameters(parameters, grads, learning_rate)

        # 记录并打印成本
        if i % 1000 == 0:
            ## 记录成本
            costs.append(cost)
            if (print_cost and i % 10000 == 0):
                # 打印成本
                print("第" + str(i) + "次迭代,成本值为:" + str(cost))

    # 是否绘制成本曲线图
    if is_plot:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('iterations (x1,000)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()

    # 返回学习后的参数
    return parameters
Esempio n. 22
0
def model2(X,
           Y,
           learning_rate=0.3,
           num_iterations=30000,
           print_cost=True,
           is_plot=True,
           lambd=0,
           keep_prob=1):

    grads = {}
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0], 20, 3, 1]

    parameters = reg_utils.initialize_parameters(layers_dims)

    for i in range(0, num_iterations):
        # 前向传播
        # 询问是否删除节点
        if keep_prob == 1:
            # 不随机删除节点
            a3, cache = reg_utils.forward_propagation(X, parameters)
        elif keep_prob < 1:
            # 随即删除节点
            a3, cache = forward_propagation_with_dropout(
                X, parameters, keep_prob)
        else:
            print("keep_prob参数错误!程序退出")
            exit

        # 计算成本
        # 是否正则化
        if lambd == 0:
            cost = reg_utils.compute_cost(a3, Y)
        else:
            cost = compute_cost_with_regularization(a3, Y, parameters, lambd)
        # 本次实验不同时使用正则化和随即删除节点
        assert (lambd == 0 or keep_prob == 1)

        if (lambd == 0 and keep_prob == 1):
            grads = reg_utils.backward_propagation(X, Y, cache)
        elif lambd != 0:
            grads = backward_propagation_with_regularization(
                X, Y, cache, lambd)
        elif keep_prob < 1:
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)

        # 更新参数
        parameters = reg_utils.update_parameters(parameters, grads,
                                                 learning_rate)

        if i % 1000 == 0:
            # 要记录的
            costs.append(cost)
            if (print_cost and i % 10000 == 0):
                # 要输出的
                print("第" + str(i) + "次迭代, 成本为:" + str(cost))

    if is_plot:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('iterations(x1,000)')
        plt.title("learning rate =" + str(learning_rate))
        plt.show()

    return parameters
Esempio n. 23
0
def model(X, Y, learning_rate = 0.3, num_iterations = 30000, print_cost = True, is_plot = True, lambd = 0, keep_prob = 1):
    """
    实现一个三层的神经网络:ReLU->ReLU->Sigmoid
    :param lambd:正则化的超参数
    :param keep_prob:随机删除结点的概率
    :return:
        parameters - 学习后的参数
    """
    parameter = {}
    grads = {}
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0], 20, 3, 1]

    # 初始化参数
    parameters = reg_utils.initialize_parameters(layers_dims)

    for l in range(num_iterations):
        # 前向传播
        # 是否随机删除结点
        if keep_prob == 1:
            # 前向传播
            a3, cache = reg_utils.forward_propagation(X, parameters)
        elif keep_prob < 1:
            a3, cache = forward_propagation_with_dropout(X, parameters, keep_prob)
        else:
            print("keep_prob参数错误!程序退出")
            exit()

        # 计算成本
        # 是否使用正则化
        if lambd == 0:
            cost = reg_utils.compute_cost(a3, Y)
        else:
            cost = compute_cost_with_regularization(a3, Y, parameters, lambd)

        if l % 1000 == 0:
            costs.append(cost)
            if print_cost:
                print(f'第{l}次迭代,成本值为:{cost}')

        # 反向传播
        # 可以同时使用L2正则化和随机删除节点,但本次实验不同时使用
        assert(lambd == 0 or keep_prob == 1)

        if lambd == 0 and keep_prob == 1:
            # 不使用L2正则化和随机删除节点
            grads = reg_utils.backward_propagation(X, Y, cache)
        elif lambd != 0:
            # 使用L2正则化,不使用dropout
            grads = backward_propagation_with_regularization(X, Y, cache, lambd)
        elif keep_prob < 1:
            # 使用dropout,不使用L2正则化
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)

        # 更新参数
        parameters = reg_utils.update_parameters(parameters, grads, learning_rate)

    if is_plot:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('iterations (x1,000)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()

    return parameters