Esempio n. 1
0
    def fit_from_geodataframe(self,
                              gdf,
                              attr,
                              spatially_extensive_attr,
                              threshold,
                              max_it=10,
                              objective_func=ObjectiveFunctionPairwise(),
                              contiguity="rook"):
        """
        Alternative API for :meth:`fit_from_scipy_sparse_matrix:.

        Parameters
        ----------
        gdf : :class:`geopandas.GeoDataFrame`

        attr : str or list
            The clustering criteria (columns of the GeoDataFrame `gdf`) are
            specified as string (for one column) or list of strings (for
            multiple columns).
        spatially_extensive_attr : str or list
            The name (`str`) or names (`list` of strings) of column(s) in `gdf`
            containing the spatially extensive attributes.
        threshold : numbers.Real or :class:`numpy.ndarray`
            Refer to the corresponding argument in
            :meth:`fit_from_scipy_sparse_matrix`.
        max_it : int, default: 10
            Refer to the corresponding argument in
            :meth:`fit_from_scipy_sparse_matrix`.
        objective_func : :class:`region.ObjectiveFunction`, default: ObjectiveFunctionPairwise()
            Refer to the corresponding argument in
            :meth:`fit_from_scipy_sparse_matrix`.
        contiguity : {"rook", "queen"}, default: "rook"
            Defines the contiguity relationship between areas. Possible
            contiguity definitions are:

            * "rook" - Rook contiguity.
            * "queen" - Queen contiguity.
        """
        w = w_from_gdf(gdf, contiguity)
        attr = array_from_df_col(gdf, attr)
        spat_ext_attr = array_from_df_col(gdf, spatially_extensive_attr)

        self.fit_from_w(w,
                        attr,
                        spat_ext_attr,
                        threshold=threshold,
                        max_it=max_it,
                        objective_func=objective_func)
Esempio n. 2
0
    def fit_from_geodataframe(self,
                              gdf,
                              attr,
                              spatially_extensive_attr,
                              threshold,
                              solver="cbc",
                              metric="euclidean",
                              contiguity="rook"):
        """
        Alternative API for :meth:`fit_from_scipy_sparse_matrix`.

        Parameters
        ----------
        gdf : GeoDataFrame

        attr : str or list
            The clustering criteria (columns of the GeoDataFrame `gdf`) are
            specified as string (for one column) or list of strings (for
            multiple columns).
        spatially_extensive_attr : str or list
            The name (`str`) or names (`list` of strings) of column(s) in `gdf`
            containing the spatially extensive attributes.
        threshold : numbers.Real or :class:`numpy.ndarray`
            Refer to the corresponding argument in
            :meth:`fit_from_scipy_sparse_matrix`.
        solver : {"cbc", "cplex", "glpk", "gurobi"}, default: "cbc"
            Refer to the corresponding argument in
            :meth:`fit_from_scipy_sparse_matrix`.
        metric : str or function, default: "euclidean"
            Refer to the corresponding argument in
            :meth:`fit_from_scipy_sparse_matrix`.
        contiguity : {"rook", "queen"}, default: "rook"
            Defines the contiguity relationship between areas. Possible
            contiguity definitions are:

            * "rook" - Rook contiguity.
            * "queen" - Queen contiguity.
        """
        w = w_from_gdf(gdf, contiguity)
        attr = array_from_df_col(gdf, attr)
        spat_ext_attr = array_from_df_col(gdf, spatially_extensive_attr)

        self.fit_from_w(w,
                        attr,
                        spat_ext_attr,
                        threshold=threshold,
                        solver=solver,
                        metric=metric)
Esempio n. 3
0
    def fit_from_geodataframe(self,
                              gdf,
                              attr,
                              n_regions,
                              method="flow",
                              solver="cbc",
                              metric="euclidean",
                              contiguity="rook"):
        """
        Alternative API for :meth:`fit_from_scipy_sparse_matrix:.

        Parameters
        ----------
        gdf : GeoDataFrame

        attr : str or list
            The clustering criteria (columns of the GeoDataFrame `gdf`) are
            specified as string (for one column) or list of strings (for
            multiple columns).
        n_regions : int
            See the corresponding argument in
            :meth:`fit_from_scipy_sparse_matrix`.
        method : str
            See the corresponding argument in
            :meth:`fit_from_scipy_sparse_matrix`.
        solver : str
            See the corresponding argument in
            :meth:`fit_from_scipy_sparse_matrix`.
        contiguity : {"rook", "queen"}, default: "rook"
            Defines the contiguity relationship between areas. Possible
            contiguity definitions are:

            * "rook" - Rook contiguity.
            * "queen" - Queen contiguity.

        metric : str or function, default: "euclidean"
            See the corresponding argument in
            :meth:`fit_from_scipy_sparse_matrix`.
        """
        w = w_from_gdf(gdf, contiguity)
        attr = array_from_df_col(gdf, attr)
        self.fit_from_w(w,
                        attr,
                        n_regions,
                        method=method,
                        solver=solver,
                        metric=metric)
Esempio n. 4
0
 def fit_from_geodataframe(self,
                           gdf,
                           attr,
                           n_regions,
                           contiguity="rook",
                           initial_labels=None,
                           cooling_factor=0.85,
                           objective_func=ObjectiveFunctionPairwise()):
     """
     Parameters
     ----------
     gdf : :class:`geopandas.GeoDataFrame`
         Refer to the corresponding argument in
         :meth:`AZP.fit_from_geodataframe`.
     attr : `str` or `list`
         Refer to the corresponding argument in
         :meth:`AZP.fit_from_geodataframe`.
     n_regions : `int`
         Refer to the corresponding argument in
         :meth:`AZP.fit_from_geodataframe`.
     contiguity : `str`
         Refer to the corresponding argument in
         :meth:`AZP.fit_from_geodataframe`.
     initial_labels : :class:`numpy.ndarray` or None, default: None
         Refer to the corresponding argument in
         :meth:`AZP.fit_from_geodataframe`.
     cooling_factor : float, default: 0.85
         Refer to the corresponding argument in
         :meth:`fit_from_scipy_sparse_matrix`.
     objective_func : :class:`region.ObjectiveFunction`, default: ObjectiveFunctionPairwise()
         Refer to the corresponding argument in
         :meth:`fit_from_scipy_sparse_matrix`.
     """
     w = w_from_gdf(gdf, contiguity)
     attr = array_from_df_col(gdf, attr)
     self.fit_from_w(
         w,
         attr,
         n_regions,
         initial_labels,
         cooling_factor=cooling_factor,
         objective_func=objective_func)
Esempio n. 5
0
    def fit_from_geodataframe(self,
                              gdf,
                              attr,
                              n_regions,
                              contiguity="rook",
                              initial_labels=None,
                              objective_func=ObjectiveFunctionPairwise()):
        """
        Alternative API for :meth:`fit_from_scipy_sparse_matrix`.

        Parameters
        ----------
        gdf : :class:`geopandas.GeoDataFrame`

        attr : `str` or `list`
            The clustering-relevant attributes (columns of the GeoDataFrame
            `gdf`) are specified as string (for one column) or list of strings
            (for multiple columns).
        n_regions : `int`
            Refer to the corresponding argument in
            :meth:`fit_from_scipy_sparse_matrix`.
        contiguity : {"rook", "queen"}, default: "rook"
            Defines the contiguity relationship between areas. Possible
            contiguity definitions are:

            * "rook" - Rook contiguity.
            * "queen" - Queen contiguity.

        initial_labels : :class:`numpy.ndarray` or None, default: None
            Refer to the corresponding argument in
            :meth:`fit_from_scipy_sparse_matrix`.
        objective_func : :class:`region.ObjectiveFunction`, default: ObjectiveFunctionPairwise()
            Refer to the corresponding argument in
            :meth:`fit_from_scipy_sparse_matrix`.
        """
        w = w_from_gdf(gdf, contiguity)
        attr = array_from_df_col(gdf, attr)
        self.fit_from_w(
            w, attr, n_regions, initial_labels, objective_func=objective_func)