Esempio n. 1
0
def minor_at_element(matrix, row, column):
    # Handle input errors
    square_matrix(matrix)
    whole_number(row, 'second')
    whole_number(column, 'third')

    # Create intermediary dictionary and list to return
    storage = {}
    result = []

    # Iterate over outer lists of input
    for m in range(len(matrix)):
        if m != row:
            storage[m] = []

            # Iterate over inner lists of input
            for n in range(len(matrix[0])):
                if n != column:
                    storage[m].append(matrix[m][n])

    # Iterate over keys in dictionary
    for key in storage:
        result.append(storage[key])

    # Return result
    return result
Esempio n. 2
0
def linear_determinant(matrix, result=0):
    """
    Calculate the determinant of a matrix

    Parameters
    ----------
    matrix : list of lists of int or float
        List of lists of numbers representing a matrix

    Raises
    ------
    TypeError
        First argument must be a 2-dimensional list
    TypeError
        Elements nested within first argument must be integers or floats
    ValueError
        First argument must contain the same amount of lists as the amount of elements contained within its first list
    
    Returns
    -------
    determinant : float
        Determinant of a matrix

    Warning
    -------
    Function has factorial time complexity; not recommended for matrices larger than 7-by-7

    See Also
    --------
    :func:`~regressions.matrices.minors.matrix_of_minors`, :func:`~regressions.matrices.inverse.inverse_matrix`

    Notes
    -----
    - Original matrix: :math:`\\mathbf{A} = \\begin{bmatrix} a_{1,1} & a_{1,2} & \\cdots & a_{1,j} & a_{1,n} \\\\ a_{2,1} & a_{2,2} & \\cdots & a_{2,j} & a_{2,n} \\\\ a_{i,1} & a_{i,2} & \\cdots & a_{i,j} & a_{i,n} \\\\ \\cdots & \\cdots & \\cdots & \\cdots & \\cdots \\\\ a_{m,1} & a_{m,2} & \\cdots & a_{m,j} & a_{m,n} \\end{bmatrix}`
    - Determinant of matrix (if :math:`\\mathbf{A}` contains an odd number of columns): :math:`|\\mathbf{A}| = a_{1,1}\\cdot{|\\mathbf{A}_{1,1}|} - a_{1,2}\\cdot{|\\mathbf{A}_{1,2}|} + \\cdots - a_{1,j}\\cdot{|\\mathbf{A}_{1,j}|} + a_{1,n}\\cdot{|\\mathbf{A}_{1,n}|}`
    - Determinant of matrix (if :math:`\\mathbf{A}` contains an even number of columns): :math:`|\\mathbf{A}| = a_{1,1}\\cdot{|\\mathbf{A}_{1,1}|} - a_{1,2}\\cdot{|\\mathbf{A}_{1,2}|} + \\cdots + a_{1,j}\\cdot{|\\mathbf{A}_{1,j}|} - a_{1,n}\\cdot{|\\mathbf{A}_{1,n}|}`
    - |determinant|

    Examples
    --------
    Import `linear_determinant` function from `regressions` library
        >>> from regressions.matrices.determinant import linear_determinant
    Calculate the determinant of [[1, 2], [3, 4]]
        >>> determinant_2x2 = linear_determinant([[1, 2], [3, 4]])
        >>> print(determinant_2x2)
        -2.0
    Calculate the determinant of [[2, 3, 5], [7, 11, 13], [17, 19, 23]]
        >>> determinant_3x3 = linear_determinant([[2, 3, 5], [7, 11, 13], [17, 19, 23]])
        >>> print(determinant_3x3)
        -78.0
    """
    # Handle input errors
    square_matrix(matrix)
    whole_number(result, 'second')

    # Handle base case
    if len(matrix) == 1:
        result += float(matrix[0][0])
        return result

    # Handle recursive case
    else:
        # Create intermediary variables
        alternating = []
        minors = []
        leads = matrix[0]

        # Iterate over first inner list of input
        for i in range(len(leads)):
            minors.append(minor_at_element(matrix, 0, i))
            if i % 2 == 0:
                alternating.append(leads[i])
            else:
                alternating.append(-1 * leads[i])

        # Iterate over alternating
        for j in range(len(alternating)):
            result += alternating[j] * linear_determinant(minors[j])

    # Convert result to float
    floated_result = float(result)
    return floated_result
Esempio n. 3
0
 def test_whole_array_raises(self):
     with self.assertRaises(Exception) as context:
         whole_number(choices, 'second')
     self.assertEqual(type(context.exception), ValueError)
     self.assertEqual(str(context.exception),
                      'Second argument must be a whole number')
Esempio n. 4
0
 def test_whole_negative_raises(self):
     with self.assertRaises(Exception) as context:
         whole_number(good_integer, 'second')
     self.assertEqual(type(context.exception), ValueError)
     self.assertEqual(str(context.exception),
                      'Second argument must be a whole number')
Esempio n. 5
0
 def test_whole_natural(self):
     whole_natural = whole_number(good_positive, 'third')
     self.assertEqual(whole_natural, 'Third argument is a whole number')
Esempio n. 6
0
 def test_whole_zero(self):
     whole_zero = whole_number(good_whole, 'second')
     self.assertEqual(whole_zero, 'Second argument is a whole number')