# On versions of L4T prior to 28.1, add 'flip-method=2' into gst_str gst_str = ('nvcamerasrc ! ' 'video/x-raw(memory:NVMM), ' 'width=(int)2592, height=(int)1458, ' 'format=(string)I420, framerate=(fraction)30/1 ! ' 'nvvidconv ! ' 'video/x-raw, width=(int){}, height=(int){}, ' 'format=(string)BGRx ! ' 'videoconvert ! appsink').format(width, height) return cv2.VideoCapture(gst_str, cv2.CAP_GSTREAMER) ''' reid_mode = cam_reid.reid_model() # encode origin image compare = cam_reid.Compare(model=reid_mode, origin_img="./image/origin") origin_f, origin_name = compare.encode_origin_image() def open_cam_onboard(width, height): gst_elements = str(subprocess.check_output('gst-inspect-1.0')) if 'nvcamerasrc' in gst_elements: # On versions of L4T prior to 28.1, add 'flip-method=2' into gst_str gst_str = ('nvcamerasrc ! ' 'video/x-raw(memory:NVMM), ' 'width=(int)2592, height=(int)1458, ' 'format=(string)I420, framerate=(fraction)30/1 ! ' 'nvvidconv ! ' 'video/x-raw, width=(int){}, height=(int){}, ' 'format=(string)BGRx ! ' 'videoconvert ! appsink').format(width, height)
from detection import cam_detection from reid import cam_reid import cv2 import time detect_model = cam_detection.detection_model() reid_mode = cam_reid.reid_model() # encode origin image compare = cam_reid.Compare( model=reid_mode, origin_img="/home/hlzhang/project/detection_reid/image/origin") origin_f, origin_name = compare.encode_origin_image() def handle_signal_image(img): # # encode origin image # compare = cam_reid.Compare(model=reid_mode, origin_img=origin_img) # origin_f, origin_name = compare.encode_origin_image() # person detection img = cv2.resize(img, (640, 480)) idxs, classes, anchors = cam_detection.detection_person(img, detect_model) bounding_boxs = [] for j in range(idxs[0].shape[0]): bbox = anchors[idxs[0][j], :] x1 = int(bbox[0]) y1 = int(bbox[1]) x2 = int(bbox[2])