Esempio n. 1
0
 def hessian_params(self, points: np.ndarray, params: Union[List[float], List[Interval]]) -> Union[List[List[np.ndarray]], List[List[Interval]]]:
     a, b, theta = params
     x = points[:, 0]
     y = points[:, 1]
     z = points[:, 2]
     zero = iv.zeros_like(z)
     return [
         [
             iv.stack([
                 z * (iv.cos(theta) * x - iv.sin(theta) * y),
                 z * (iv.sin(theta) * x + iv.cos(theta) * y),
                 zero
             ], axis=1, convert=isinstance(a, Interval)),
             iv.stack([
                 zero,
                 zero,
                 zero
             ], axis=1, convert=isinstance(a, Interval)),
             iv.stack([
                 -a * z * (iv.sin(theta) * x + iv.cos(theta) * y),
                 a * z * (iv.cos(theta) * x - iv.sin(theta) * y),
                 zero
             ], axis=1, convert=isinstance(a, Interval))
         ],
         [
             iv.stack([
                 zero,
                 zero,
                 zero
             ], axis=1, convert=isinstance(a, Interval)),
             iv.stack([
                 zero,
                 zero,
                 zero
             ], axis=1, convert=isinstance(a, Interval)),
             iv.stack([
                 -z * (iv.sin(theta) * x + iv.cos(theta) * y),
                 z * (iv.cos(theta) * x - iv.sin(theta) * y),
                 zero
             ], axis=1, convert=isinstance(a, Interval))
         ],
         [
             iv.stack([
                 -a * z * (iv.sin(theta) * x + iv.cos(theta) * y),
                 a * z * (iv.cos(theta) * x - iv.sin(theta) * y),
                 zero
             ], axis=1, convert=isinstance(a, Interval)),
             iv.stack([
                 -z * (iv.sin(theta) * x + iv.cos(theta) * y),
                 z * (iv.cos(theta) * x - iv.sin(theta) * y),
                 zero
             ], axis=1, convert=isinstance(a, Interval)),
             iv.stack([
                 (0.5 * iv.square(a) * z + b * z + 1) * (-iv.cos(theta) * x + iv.sin(theta) * y),
                 (0.5 * iv.square(a) * z + b * z + 1) * (-iv.sin(theta) * x - iv.cos(theta) * y),
                 zero
             ], axis=1, convert=isinstance(a, Interval))
         ]
     ]
Esempio n. 2
0
 def transform(
     self, points: np.ndarray,
     params: Union[List[float],
                   List[Interval]]) -> Union[np.ndarray, Interval]:
     a, b = params
     x = points[:, 0]
     y = points[:, 1]
     z = points[:, 2]
     x_transformed = (0.5 * iv.square(a) * z + b * z + 1) * x
     y_transformed = (0.5 * iv.square(a) * z + b * z + 1) * y
     z_transformed = z
     return iv.stack([x_transformed, y_transformed, z_transformed],
                     axis=1,
                     convert=isinstance(a, Interval))
Esempio n. 3
0
 def hessian_points(self, points: np.ndarray, params: Union[List[float], List[Interval]]) -> Union[List[List[np.ndarray]], List[List[Interval]]]:
     a, b, theta = params
     z = points[:, 2]
     zero = iv.zeros_like(z)
     one = iv.ones_like(z)
     return [
         [
             iv.stack([
                 zero,
                 zero,
                 zero
             ], axis=1, convert=isinstance(a, Interval)),
             iv.stack([
                 zero,
                 zero,
                 zero
             ], axis=1, convert=isinstance(a, Interval)),
             iv.stack([
                 (0.5 * iv.square(a) + b) * iv.cos(theta) * one,
                 (0.5 * iv.square(a) + b) * iv.sin(theta) * one,
                 zero
             ], axis=1, convert=isinstance(a, Interval)),
         ],
         [
             iv.stack([
                 zero,
                 zero,
                 zero
             ], axis=1, convert=isinstance(a, Interval)),
             iv.stack([
                 zero,
                 zero,
                 zero
             ], axis=1, convert=isinstance(a, Interval)),
             iv.stack([
                 -(0.5 * iv.square(a) + b) * iv.sin(theta) * one,
                 (0.5 * iv.square(a) + b) * iv.cos(theta) * one,
                 zero
             ], axis=1, convert=isinstance(a, Interval))
         ],
         [
             iv.stack([
                 (0.5 * iv.square(a) + b) * iv.cos(theta) * one,
                 (0.5 * iv.square(a) + b) * iv.sin(theta) * one,
                 zero
             ], axis=1, convert=isinstance(a, Interval)),
             iv.stack([
                 -(0.5 * iv.square(a) + b) * iv.sin(theta) * one,
                 (0.5 * iv.square(a) + b) * iv.cos(theta) * one,
                 zero
             ], axis=1, convert=isinstance(a, Interval)),
             iv.stack([
                 zero,
                 zero,
                 zero
             ], axis=1, convert=isinstance(a, Interval))
         ],
     ]
Esempio n. 4
0
 def hessian_params(
     self, points: np.ndarray, params: Union[List[float], List[Interval]]
 ) -> Union[List[List[np.ndarray]], List[List[Interval]]]:
     assert len(params) == 1
     alpha = params[0]
     x = points[:, 0]
     y = points[:, 1]
     z = points[:, 2]
     d_alpha_alpha_x = -iv.square(z) * (x * iv.cos(alpha * z) -
                                        y * iv.sin(alpha * z))
     d_alpha_alpha_y = -iv.square(z) * (x * iv.sin(alpha * z) +
                                        y * iv.cos(alpha * z))
     d_alpha_alpha_z = iv.zeros_like(z)
     return [[
         iv.stack([d_alpha_alpha_x, d_alpha_alpha_y, d_alpha_alpha_z],
                  axis=1,
                  convert=isinstance(alpha, Interval))
     ]]
Esempio n. 5
0
 def gradient_points(
     self, points: np.ndarray, params: Union[List[float], List[Interval]]
 ) -> Union[List[np.ndarray], List[Interval]]:
     a, b = params
     x = points[:, 0]
     y = points[:, 1]
     z = points[:, 2]
     zero = iv.zeros_like(z)
     return [
         iv.stack([(0.5 * iv.square(a) * z + b * z + 1), zero, zero],
                  axis=1,
                  convert=isinstance(a, Interval)),
         iv.stack([zero, (0.5 * iv.square(a) * z + b * z + 1), zero],
                  axis=1,
                  convert=isinstance(a, Interval)),
         iv.stack([(0.5 * iv.square(a) + b) * x,
                   (0.5 * iv.square(a) + b) * y,
                   iv.ones_like(z)],
                  axis=1,
                  convert=isinstance(a, Interval)),
     ]
Esempio n. 6
0
 def hessian_points(
     self, points: np.ndarray, params: Union[List[float], List[Interval]]
 ) -> Union[List[List[np.ndarray]], List[List[Interval]]]:
     a, b = params
     x = points[:, 0]
     zero = iv.zeros_like(x)
     one = iv.ones_like(x)
     return [[
         iv.stack([zero, zero, zero],
                  axis=1,
                  convert=isinstance(a, Interval)),
         iv.stack([zero, zero, zero],
                  axis=1,
                  convert=isinstance(a, Interval)),
         iv.stack([(0.5 * iv.square(a) + b) * one, zero, zero],
                  axis=1,
                  convert=isinstance(a, Interval)),
     ],
             [
                 iv.stack([zero, zero, zero],
                          axis=1,
                          convert=isinstance(a, Interval)),
                 iv.stack([zero, zero, zero],
                          axis=1,
                          convert=isinstance(a, Interval)),
                 iv.stack([zero, (0.5 * iv.square(a) + b) * one, zero],
                          axis=1,
                          convert=isinstance(a, Interval)),
             ],
             [
                 iv.stack([(0.5 * iv.square(a) + b) * one, zero, zero],
                          axis=1,
                          convert=isinstance(a, Interval)),
                 iv.stack([zero, (0.5 * iv.square(a) + b) * one, zero],
                          axis=1,
                          convert=isinstance(a, Interval)),
                 iv.stack([zero, zero, zero],
                          axis=1,
                          convert=isinstance(a, Interval)),
             ]]
Esempio n. 7
0
def encode(transformation: Transformation, points: np.ndarray, params: List[Interval]) -> LinearBounds:
    center = [p.center() for p in params]
    zero_order_term = transformation.transform(points, center)
    gradients = transformation.gradient_params(points, center)
    hessian = transformation.hessian_params(points, params)

    offset = zero_order_term
    for i in range(len(params)):
        offset = offset - (gradients[i] * center[i])

    second_order_bounds = 0.0
    for i, j in itertools.product(range(len(params)), range(len(params))):
        factor = iv.square(params[i] - center[i]) if i == j else (params[i] - center[i]) * (params[j] - center[j])
        second_order_bounds = second_order_bounds + (0.5 * hessian[i][j] * factor)

    return LinearBounds(
        upper_slope=np.stack(gradients, axis=2),
        lower_slope=np.stack(gradients, axis=2),
        upper_offset=offset + second_order_bounds.upper_bound,
        lower_offset=offset + second_order_bounds.lower_bound,
    )
Esempio n. 8
0
 def gradient_points(self, points: np.ndarray, params: Union[List[float], List[Interval]]) -> Union[List[np.ndarray], List[Interval]]:
     a, b, theta = params
     x = points[:, 0]
     y = points[:, 1]
     z = points[:, 2]
     zero = iv.zeros_like(z)
     one = iv.ones_like(z)
     return [
         iv.stack([
             (0.5 * iv.square(a) * z + b * z + 1) * iv.cos(theta),
             (0.5 * iv.square(a) * z + b * z + 1) * iv.sin(theta),
             zero
         ], axis=1, convert=isinstance(a, Interval)),
         iv.stack([
             -(0.5 * iv.square(a) * z + b * z + 1) * iv.sin(theta),
             (0.5 * iv.square(a) * z + b * z + 1) * iv.cos(theta),
             zero
         ], axis=1, convert=isinstance(a, Interval)),
         iv.stack([
             (0.5 * iv.square(a) + b) * (iv.cos(theta) * x - iv.sin(theta) * y),
             (0.5 * iv.square(a) + b) * (iv.sin(theta) * x + iv.cos(theta) * y),
             one
         ], axis=1, convert=isinstance(a, Interval))
     ]
Esempio n. 9
0
 def hessian_points(
     self, points: np.ndarray, params: Union[List[float], List[Interval]]
 ) -> Union[List[List[np.ndarray]], List[List[Interval]]]:
     (alpha, ) = params
     x = points[:, 0]
     y = points[:, 1]
     z = points[:, 2]
     zero = iv.zeros_like(x)
     return [
         [
             iv.stack([
                 zero,
                 zero,
                 zero,
             ],
                      axis=1,
                      convert=isinstance(alpha, Interval)),
             iv.stack([
                 zero,
                 zero,
                 zero,
             ],
                      axis=1,
                      convert=isinstance(alpha, Interval)),
             iv.stack([
                 -alpha * iv.sin(alpha * z),
                 alpha * iv.cos(alpha * z),
                 zero,
             ],
                      axis=1,
                      convert=isinstance(alpha, Interval)),
         ],
         [
             iv.stack([
                 zero,
                 zero,
                 zero,
             ],
                      axis=1,
                      convert=isinstance(alpha, Interval)),
             iv.stack([
                 zero,
                 zero,
                 zero,
             ],
                      axis=1,
                      convert=isinstance(alpha, Interval)),
             iv.stack([
                 -alpha * iv.cos(alpha * z),
                 -alpha * iv.sin(alpha * z),
                 zero,
             ],
                      axis=1,
                      convert=isinstance(alpha, Interval)),
         ],
         [
             iv.stack([
                 -alpha * iv.sin(alpha * z),
                 alpha * iv.cos(alpha * z),
                 zero,
             ],
                      axis=1,
                      convert=isinstance(alpha, Interval)),
             iv.stack([
                 -alpha * iv.cos(alpha * z),
                 -alpha * iv.sin(alpha * z),
                 zero,
             ],
                      axis=1,
                      convert=isinstance(alpha, Interval)),
             iv.stack([
                 iv.square(alpha) *
                 (-iv.cos(alpha * z) * x + iv.sin(alpha * z) * y),
                 iv.square(alpha) *
                 (-iv.sin(alpha * z) * x - iv.cos(alpha * z) * y),
                 zero,
             ],
                      axis=1,
                      convert=isinstance(alpha, Interval)),
         ],
     ]
Esempio n. 10
0
 def test_single_scalar(self, a: float, expected: float):
     self.assertAlmostEqual(expected, iv.square(a))
Esempio n. 11
0
 def test_single_interval(self, a: Interval, expected: Interval):
     self.assertAlmostEqual(expected.lower_bound, iv.square(a).lower_bound)
     self.assertAlmostEqual(expected.upper_bound, iv.square(a).upper_bound)
     self.assertSound(iv.square(a), [a], np.square)
Esempio n. 12
0
 def test_nd_array(self, a):
     self.assertAlmostEqualNumpy(np.square(a), iv.square(a))
Esempio n. 13
0
 def test_nd_interval(self, a):
     self.assertSound(iv.square(a), [a], np.square)