Esempio n. 1
0
def split_implicitly(bounds, intervals, encode_rotation, params):
    split_inc = [(param.upper_bound - param.lower_bound) / intervals
                 for param in params]

    refined_lb = np.full_like(bounds.lower_bound, float('inf'))
    refined_ub = np.full_like(bounds.upper_bound, float('-inf'))

    for idx in itertools.product(range(intervals), repeat=len(params)):
        split_min = [
            param.lower_bound + idx[i] * split_inc[i]
            for i, param in enumerate(params)
        ]
        split_max = [
            param.lower_bound + (idx[i] + 1) * split_inc[i]
            for i, param in enumerate(params)
        ]
        split_intervals = [
            Interval(lb, ub) for lb, ub in zip(split_min, split_max)
        ]
        candidate_bounds = encode_rotation(split_intervals)
        np.minimum(refined_lb, candidate_bounds.lower_bound, out=refined_lb)
        np.maximum(refined_ub, candidate_bounds.upper_bound, out=refined_ub)

    assert np.logical_or(bounds.lower_bound <= refined_lb,
                         np.isclose(bounds.lower_bound, refined_lb)).all()
    assert np.logical_or(refined_ub <= bounds.upper_bound,
                         np.isclose(refined_ub, bounds.upper_bound)).all()
    assert (refined_lb <= refined_ub).all()

    return Interval(refined_lb, refined_ub)
Esempio n. 2
0
    def test_broadcast_addition(self):
        a = Interval(-1., 1.)
        b = np.random.uniform(-100, 100, (100,))

        self.assertAlmostEqualNumpy(np.minimum(-b, b), (a * b).lower_bound)
        self.assertAlmostEqualNumpy(np.maximum(-b, b), (a * b).upper_bound)

        self.assertAlmostEqualNumpy(np.minimum(-b, b), (b * a).lower_bound)
        self.assertAlmostEqualNumpy(np.maximum(-b, b), (b * a).upper_bound)
Esempio n. 3
0
    def test_broadcast(self):
        a = Interval(-1, 1)
        b = np.random.uniform(-100, 100, (100,))

        self.assertAlmostEqualNumpy(-b - 1, (a - b).lower_bound)
        self.assertAlmostEqualNumpy(-b + 1, (a - b).upper_bound)

        self.assertAlmostEqualNumpy(b - 1, (b - a).lower_bound)
        self.assertAlmostEqualNumpy(b + 1, (b - a).upper_bound)
Esempio n. 4
0
def load_spec(spec_dir: Path, counter: int) -> List[Tuple[List[Interval], Interval, LinearBounds]]:
    parameters = list()
    interval_bounds = list()
    lower_biases = list()
    upper_biases = list()
    lower_weights = list()
    upper_weights = list()

    with (spec_dir / f'{counter}.csv').open('r') as f:
        split_parameters = list()
        split_interval_bounds = list()
        split_lower_biases = list()
        split_upper_biases = list()
        split_lower_weights = list()
        split_upper_weights = list()

        for line in f.readlines():
            if '|' in line:
                lower, upper = line.strip().split(' | ')
                lower = [float(v) for v in lower.split(' ')]
                upper = [float(v) for v in upper.split(' ')]

                split_lower_biases.append(lower[0])
                split_upper_biases.append(upper[0])
                split_lower_weights.append(lower[1:])
                split_upper_weights.append(upper[1:])

            elif 'SPEC_FINISHED' in line:
                parameters.append(np.asarray(split_parameters))
                interval_bounds.append(np.asarray(split_interval_bounds))
                lower_biases.append(np.asarray(split_lower_biases))
                upper_biases.append(np.asarray(split_upper_biases))
                lower_weights.append(np.asarray(split_lower_weights))
                upper_weights.append(np.asarray(split_upper_weights))

                split_parameters = list()
                split_interval_bounds = list()
                split_lower_biases = list()
                split_upper_biases = list()
                split_lower_weights = list()
                split_upper_weights = list()

            elif line.startswith('('):
                split_interval_bounds.extend(eval(line))

            else:
                split_parameters.append([float(v) for v in line.strip().split(' ')])

    parameters = np.array(parameters)
    interval_bounds = np.asarray(interval_bounds)
    lower_biases = np.asarray(lower_biases)
    upper_biases = np.asarray(upper_biases)
    lower_weights = np.asarray(lower_weights)
    upper_weights = np.asarray(upper_weights)

    result = list()

    for i in range(len(parameters)):
        params = [Interval(param[0], param[1]) for param in parameters[i]]

        bounds = Interval(
            lower_bound=interval_bounds[i][:, 0],
            upper_bound=interval_bounds[i][:, 1]
        )

        constraints = LinearBounds(
            upper_slope=upper_weights[i],
            upper_offset=upper_biases[i],
            lower_slope=lower_weights[i],
            lower_offset=lower_biases[i]
        )
        result.append((params, bounds, constraints))

    return result
Esempio n. 5
0
    intervals_per_dimension = [settings.intervals] * num_params

    theta_inc = [2.0 * param / float(intervals) for param, intervals in zip(parameters, intervals_per_dimension)]

    checkpoints_sample = checkpoints[str(i)] if str(i) in checkpoints else {}

    valid_classes = np.unique(label)
    certified_points = np.full(settings.num_points, True)

    timer.start()

    parameter_iterator = itertools.product(*(range(intervals) for intervals in intervals_per_dimension))
    progress_bar = tqdm(parameter_iterator, desc=f"Object {counter}", unit="interval", total=settings.intervals ** num_params)
    for idx in progress_bar:
        assert len(idx) == len(parameters) and len(theta_inc) == len(parameters)
        params = [Interval(j * inc - theta, (j + 1) * inc - theta) for j, inc, theta in zip(idx, theta_inc, parameters)]

        interval_key = 'x'.join([f"[{i.lower_bound:.4f},{i.upper_bound:.4f}]" for i in params])
        if interval_key in checkpoints_sample:
            interval_certified = np.array(checkpoints_sample[interval_key])

        else:
            assert np_points.shape[0] == settings.num_points, \
                f"invalid points shape {np_points.shape}, expected ({settings.num_points}, x)"

            if settings.relaxation == 'interval':
                bounds = transformation.transform(np_points, params)

                if settings.implicit_intervals > 1:
                    bounds = split_implicitly(
                        bounds=bounds, intervals=settings.implicit_intervals,
Esempio n. 6
0
 def evaluate_at_2d(self, x, y) -> Interval:
     return Interval(
         lower_bound=self.lower_offset + self.lower_slope[:, :, 0] * x + self.lower_slope[:, :, 1] * y,
         upper_bound=self.upper_offset + self.upper_slope[:, :, 0] * x + self.upper_slope[:, :, 1] * y,
     )
Esempio n. 7
0
 def evaluate_at(self, x) -> Interval:
     return Interval(self.lower_offset + self.lower_slope[:, :, 0] * x, self.upper_offset + self.upper_slope[:, :, 0] * x)
Esempio n. 8
0
 def test_interval_soundness(self):
     self.assertSound(Interval(-1.0, 1.0), [Interval(-1.0, 1.0)], lambda x: x)
Esempio n. 9
0
 def test_lower_bound_violation(self):
     with self.assertRaises(AssertionError):
         self.assertSound(Interval(-1.0, 1.0), [Interval(-1.0 - 1e-8, 1.0)], lambda x: x)
Esempio n. 10
0
 def test_approximate_interval_soundness(self):
     self.assertSound(Interval(-1.0, 1.0), [Interval(-1.0 - 1e-9, 1 + 1e-9)], lambda x: x)
Esempio n. 11
0
class TestIntervalMultiplication(RelaxationTestCase):

    @parameterized.expand([
        [Interval(0, 0), Interval(0, 0), Interval(0, 0)],
        [Interval(1, 1), Interval(1, 1), Interval(1, 1)],
        [Interval(-1, -1), Interval(-2, -2), Interval(2, 2)],
        [Interval(-2, 2), Interval(-2, 2), Interval(-4, 4)],
        [Interval(-2, 5), Interval(1, 2), Interval(-4, 10)],
    ])
    def test_float_intervals(self, a, b, expected):
        self.assertEqual(expected, a * b)
        self.assertEqual(expected, b * a)

    @parameterized.expand(zip(sample_intervals(), sample_intervals()))
    def test_ndarray_intervals(self, a, b):
        self.assertSound(a * b, [a, b], lambda p: p[0] * p[1])
        self.assertSound(b * a, [a, b], lambda p: p[0] * p[1])

    @parameterized.expand([
        [0, Interval(0, 0), Interval(0, 0)],
        [1, Interval(1, 1), Interval(1, 1)],
        [-1, Interval(-2, -2), Interval(2, 2)],
        [2, Interval(-2, 5), Interval(-4, 10)],
    ])
    def test_with_constants(self, a, b, expected):
        self.assertEqual(expected, a * b)
        self.assertEqual(expected, b * a)

    @parameterized.expand(zip(np.random.uniform(-100, 100, (100, 100)), sample_intervals()))
    def test_with_constant_ndarray(self, a, b):
        self.assertSound(a * b, [b], lambda b: a * b)
        self.assertSound(b * a, [b], lambda b: a * b)

    def test_broadcast_addition(self):
        a = Interval(-1., 1.)
        b = np.random.uniform(-100, 100, (100,))

        self.assertAlmostEqualNumpy(np.minimum(-b, b), (a * b).lower_bound)
        self.assertAlmostEqualNumpy(np.maximum(-b, b), (a * b).upper_bound)

        self.assertAlmostEqualNumpy(np.minimum(-b, b), (b * a).lower_bound)
        self.assertAlmostEqualNumpy(np.maximum(-b, b), (b * a).upper_bound)
Esempio n. 12
0
def sample_intervals(num_batches=100, size_intervals=100):
    scaling = np.linspace(0, 1, num_batches).reshape((num_batches, 1)).repeat(size_intervals, axis=1)
    center = np.random.uniform(-100 * scaling, 100 * scaling, (num_batches, size_intervals)).squeeze()
    width = np.random.uniform(0, 200 * scaling, (num_batches, size_intervals)).squeeze()
    return [Interval(center[i] - width[i], center[i] + width[i]) for i in range(num_batches)]
Esempio n. 13
0
    certified = True

    timer.start(TOTAL_TIMER)
    elapsed_bounds = 0.0

    parameter_iterator = itertools.product(
        *(range(intervals) for intervals in intervals_per_dimension))
    progress_bar = tqdm(parameter_iterator,
                        desc=f"Object {counter}",
                        unit="interval",
                        total=settings.intervals**num_params)
    for idx in progress_bar:
        assert len(idx) == len(parameters) and len(theta_inc) == len(
            parameters)
        params = [
            Interval(j * inc - theta, (j + 1) * inc - theta)
            for j, inc, theta in zip(idx, theta_inc, parameters)
        ]

        interval_key = 'x'.join(
            [f"[{i.lower_bound:.4f},{i.upper_bound:.4f}]" for i in params])
        if interval_key in checkpoints_sample:
            interval_certified = checkpoints_sample[interval_key]
        else:
            assert np_points.shape[0] == settings.num_points, \
                f"invalid points shape {np_points.shape}, expected ({settings.num_points}, x)"

            if settings.relaxation == 'interval':
                timer.start(BOUND_TIMER)
                bounds = transformation.transform(np_points, params)
Esempio n. 14
0
class TestIntervalSubtraction(RelaxationTestCase):

    @parameterized.expand([
        [Interval(0, 0), Interval(0, 0), Interval(0, 0)],
        [Interval(1, 1), Interval(1, 1), Interval(0, 0)],
        [Interval(1, 1), Interval(-2, -2), Interval(3, 3)],
        [Interval(-2, 5), Interval(1, 2), Interval(-4, 4)],
    ])
    def test_float_intervals(self, a, b, expected):
        self.assertEqual(expected, a - b)

    @parameterized.expand(zip(sample_intervals(), sample_intervals()))
    def test_ndarray_intervals(self, a, b):
        self.assertAlmostEqualNumpy(a.lower_bound - b.upper_bound, (a - b).lower_bound)
        self.assertAlmostEqualNumpy(a.upper_bound - b.lower_bound, (a - b).upper_bound)
        self.assertSound(a - b, [a, b], lambda p: p[0] - p[1])

    @parameterized.expand([
        [0, Interval(0, 0), Interval(0, 0)],
        [1, Interval(1, 1), Interval(0, 0)],
        [-1, Interval(-2, -2), Interval(1, 1)],
        [2, Interval(-2, 5), Interval(-3, 4)],
    ])
    def test_with_constants(self, a, b, expected):
        self.assertEqual(expected, a - b)

    @parameterized.expand(zip(np.random.uniform(-100, 100, (100, 100)), sample_intervals()))
    def test_with_constant_ndarray(self, a, b):
        self.assertAlmostEqualNumpy(a - b.upper_bound, (a - b).lower_bound)
        self.assertAlmostEqualNumpy(a - b.lower_bound, (a - b).upper_bound)
        self.assertSound(a - b, [b], lambda b: a - b)

        self.assertAlmostEqualNumpy(b.lower_bound - a, (b - a).lower_bound)
        self.assertAlmostEqualNumpy(b.upper_bound - a, (b - a).upper_bound)
        self.assertSound(b - a, [b], lambda b: b - a)

    def test_broadcast(self):
        a = Interval(-1, 1)
        b = np.random.uniform(-100, 100, (100,))

        self.assertAlmostEqualNumpy(-b - 1, (a - b).lower_bound)
        self.assertAlmostEqualNumpy(-b + 1, (a - b).upper_bound)

        self.assertAlmostEqualNumpy(b - 1, (b - a).lower_bound)
        self.assertAlmostEqualNumpy(b + 1, (b - a).upper_bound)

    @parameterized.expand([
        [Interval(0, 0), Interval(0, 0)],
        [Interval(1, 1), Interval(-1, -1)],
        [Interval(-2, 2), Interval(-2, 2)],
        [Interval(-2, 5), Interval(-5, 2)],
    ])
    def test_interval_inversion(self, a, expected):
        self.assertEqual(expected, -a)
Esempio n. 15
0
class TestIntervalAddition(RelaxationTestCase):

    @parameterized.expand([
        [Interval(0, 0), Interval(0, 0), Interval(0, 0)],
        [Interval(1, 1), Interval(1, 1), Interval(2, 2)],
        [Interval(-1, -1), Interval(-2, -2), Interval(-3, -3)],
        [Interval(-2, 5), Interval(1, 2), Interval(-1, 7)],
    ])
    def test_float_intervals(self, a, b, expected):
        self.assertEqual(expected, a + b)
        self.assertEqual(expected, b + a)

    @parameterized.expand(zip(sample_intervals(), sample_intervals()))
    def test_ndarray_intervals(self, a, b):
        self.assertAlmostEqualNumpy(a.lower_bound + b.lower_bound, (a + b).lower_bound)
        self.assertAlmostEqualNumpy(a.lower_bound + b.lower_bound, (b + a).lower_bound)
        self.assertSound(a + b, [a, b], lambda p: p[0] + p[1])

    @parameterized.expand([
        [0, Interval(0, 0), Interval(0, 0)],
        [1, Interval(1, 1), Interval(2, 2)],
        [-1, Interval(-2, -2), Interval(-3, -3)],
        [2, Interval(-2, 5), Interval(0, 7)],
    ])
    def test_with_constants(self, a, b, expected):
        self.assertEqual(expected, a + b)
        self.assertEqual(expected, b + a)

    @parameterized.expand(zip(np.random.uniform(-100, 100, (100, 100)), sample_intervals()))
    def test_with_constant_ndarray(self, a, b):
        self.assertAlmostEqualNumpy(a + b.lower_bound, (a + b).lower_bound)
        self.assertAlmostEqualNumpy(a + b.lower_bound, (b + a).lower_bound)
        self.assertSound(a + b, [b], lambda b: a + b)

    def test_broadcast_addition(self):
        a = Interval(-1, 1)
        b = np.random.uniform(-100, 100, (100,))

        self.assertAlmostEqualNumpy(b - 1, (a + b).lower_bound)
        self.assertAlmostEqualNumpy(b + 1, (a + b).upper_bound)

        self.assertAlmostEqualNumpy(b - 1, (b + a).lower_bound)
        self.assertAlmostEqualNumpy(b + 1, (b + a).upper_bound)
Esempio n. 16
0
class TestIntervalSquare(RelaxationTestCase):

    @parameterized.expand([
        [Interval(0, 0), Interval(0, 0)],
        [Interval(1, 1), Interval(1, 1)],
        [Interval(-2, -2), Interval(4, 4)],
        [Interval(2, 3), Interval(4, 9)],
        [Interval(-3, -2), Interval(4, 9)],
        [Interval(-2, 3), Interval(0, 9)]
    ])
    def test_single_interval(self, a: Interval, expected: Interval):
        self.assertAlmostEqual(expected.lower_bound, iv.square(a).lower_bound)
        self.assertAlmostEqual(expected.upper_bound, iv.square(a).upper_bound)
        self.assertSound(iv.square(a), [a], np.square)

    @parameterized.expand([
        [0, 0],
        [1, 1],
        [-1, 1],
        [2, 4],
        [-3, 9],
    ])
    def test_single_scalar(self, a: float, expected: float):
        self.assertAlmostEqual(expected, iv.square(a))

    @parameterized.expand([[i] for i in sample_intervals()])
    def test_nd_interval(self, a):
        self.assertSound(iv.square(a), [a], np.square)

    @parameterized.expand([[i] for i in np.random.uniform(-100, 100, (100, 100))])
    def test_nd_array(self, a):
        self.assertAlmostEqualNumpy(np.square(a), iv.square(a))
Esempio n. 17
0
class TestIntervalCosine(RelaxationTestCase):

    @parameterized.expand([
        [Interval(0, 0), Interval(1, 1)],
        [Interval(np.pi / 2, np.pi / 2), Interval(0, 0)],
        [Interval(-np.pi / 2, -np.pi / 2), Interval(0, 0)],
        [Interval(np.pi * 5 / 2, np.pi * 5 / 2), Interval(0, 0)],
        [Interval(np.pi * 9 / 2, np.pi * 9 / 2), Interval(0, 0)],
        [Interval(0, np.pi / 2), Interval(0, 1)]
    ])
    def test_single_interval(self, a: Interval, expected: Interval):
        self.assertAlmostEqual(expected.lower_bound, iv.cos(a).lower_bound)
        self.assertAlmostEqual(expected.upper_bound, iv.cos(a).upper_bound)
        self.assertSound(iv.cos(a), [a], np.cos)

    @parameterized.expand([
        [0, 1],
        [np.pi / 2, 0],
        [-np.pi / 2, 0],
        [np.pi * 5 / 2, 0],
        [np.pi * 3, -1],
    ])
    def test_single_scalar(self, a: float, expected: float):
        self.assertAlmostEqual(expected, iv.cos(a))

    @parameterized.expand([[i] for i in sample_intervals()])
    def test_nd_interval(self, a):
        self.assertSound(iv.cos(a), [a], np.cos)

    @parameterized.expand([[i] for i in np.random.uniform(-100, 100, (100, 100))])
    def test_nd_array(self, a):
        self.assertAlmostEqualNumpy(np.cos(a), iv.cos(a))
Esempio n. 18
0
class TestIntervalSine(RelaxationTestCase):

    @parameterized.expand([
        [Interval(0, 0), Interval(0, 0)],
        [Interval(np.pi / 2, np.pi / 2), Interval(1, 1)],
        [Interval(-np.pi / 2, -np.pi / 2), Interval(-1, -1)],
        [Interval(np.pi * 5 / 2, np.pi * 5 / 2), Interval(1, 1)],
        [Interval(np.pi * 9 / 2, np.pi * 9 / 2), Interval(1, 1)],
        [Interval(0, np.pi / 2), Interval(0, 1)]
    ])
    def test_single_interval(self, a, expected):
        self.assertEqual(expected, iv.sin(a))
        self.assertSound(iv.sin(a), [a], np.sin)

    @parameterized.expand([
        [0, 0],
        [np.pi / 2, 1],
        [-np.pi / 2, -1],
        [np.pi * 5 / 2, 1],
        [np.pi * 9 / 2, 1],
    ])
    def test_single_scalar(self, a, expected):
        self.assertAlmostEqual(expected, iv.sin(a))

    @parameterized.expand([[i] for i in sample_intervals()])
    def test_nd_interval(self, a):
        self.assertSound(iv.sin(a), [a], np.sin)

    @parameterized.expand([[i] for i in np.random.uniform(-100, 100, (100, 100))])
    def test_nd_array(self, a):
        self.assertAlmostEqualNumpy(np.sin(a), iv.sin(a))
Esempio n. 19
0
def sample_params(num_params=1, num_batches=100):
    scaling = np.linspace(0, 1, num_batches).reshape((num_batches, 1)).repeat(num_params, axis=1)
    center = np.random.uniform(-100 * scaling, 100 * scaling, (num_batches, num_params))
    width = np.random.uniform(0, 4 * scaling, (num_batches, num_params))
    return [[Interval(center[i, j] - width[i, j], center[i, j] + width[i, j]) for j in range(num_params)] for i in range(num_batches)]
Esempio n. 20
0
    inputs = {session.get_inputs()[0].name: input_data}
    outputs = session.run(None, inputs)

    assert np.all(lower_bound <= upper_bound)

    logger.info("Solving network...")
    assert lower_bound.shape[0] == settings.num_points, \
        f"invalid lower bound shape {lower_bound.shape}, expected ({settings.num_points}, x)"
    assert upper_bound.shape[0] == settings.num_points, \
        f"invalid upper bound shape {upper_bound.shape}, expected ({settings.num_points}, x)"
    assert np_points.shape[0] == settings.num_points, \
        f"invalid points shape {np_points.shape}, expected ({settings.num_points}, x)"

    start = timer()
    (dominant_class, nlb,
     nub) = eran.analyze_classification_box(Interval(lower_bound, upper_bound))
    end = timer()
    elapsed = end - start
    total_time += elapsed

    certified = dominant_class == label.item()

    if certified:
        logger.info(f"Successfully verified class {dominant_class}")
        verified_same += 1
    elif dominant_class == -1:
        logger.info(f"Failed to verify class {label.item()}")
        not_verified += 1
    else:
        logger.info(
            f"Wrongly verified class {dominant_class} instead of {label.item()}"