Esempio n. 1
0
def read_define_bounds_netcdf(file, band_conversion, extent):
    """
    Using the NetCDF file:

    Read with ncdf4 to extract information about the data extent
    Regrid to rectangular projection using remap
    ATTENTION: If the files are from the Operational Mode (starting December
        2017), remap.py should be altered! (line 15)
    """

    print('Reading NetCDF file ' + file)

    nc = Dataset(file)

    # Visualization extent for Full Disk
    # geo_extent = nc.variables['geospatial_lat_lon_extent']
    # min_lon = float(geo_extent.geospatial_westbound_longitude)
    # max_lon = float(geo_extent.geospatial_eastbound_longitude)
    # min_lat = float(geo_extent.geospatial_southbound_latitude)
    # max_lat = float(geo_extent.geospatial_northbound_latitude)
    # extent = [min_lon, min_lat, max_lon, max_lat]

    resolution = 2

    # Image extent required for the reprojection
    H = nc.variables['goes_imager_projection'].perspective_point_height
    x1 = nc.variables['x_image_bounds'][0] * H  # x1 = -5434894.885056
    x2 = nc.variables['x_image_bounds'][1] * H  # x2 = 5434894.885056
    y1 = nc.variables['y_image_bounds'][1] * H  # y1 = -5434894.885056
    y2 = nc.variables['y_image_bounds'][0] * H  # y2 = 5434894.885056
    grid = remap(file, extent, resolution, x1, y1, x2, y2)

    data = grid.ReadAsArray() + band_conversion

    return data, extent
Esempio n. 2
0
def read_and_save_image(file_name):
    # Parameters
    extent = [-90.0, -70.0, -20, 10.0]
    resolution = 2.0

    # Call the reprojection funcion
    grid = remap(file_name, extent, resolution, 'HDF5')
    data = grid.ReadAsArray()
    min_data = np.min(data)
    max_data = np.max(data)

    # Plot the Data
    bmap = Basemap(llcrnrlon=extent[0],
                   llcrnrlat=extent[1],
                   urcrnrlon=extent[2],
                   urcrnrlat=extent[3],
                   epsg=4326)
    bmap.imshow(data,
                origin='upper',
                cmap='gist_ncar',
                vmin=min_data,
                vmax=max_data)

    # Save png
    DPI = 300
    png_file_name = file_name[:-2] + 'png'
    plt.savefig(png_file_name, dpi=DPI, bbox_inches='tight', pad_inches=0)
    return png_file_name
Esempio n. 3
0
def create_tiff(filename, output, bbox):
    # config
    GDAL_DATA_TYPE = gdal.GDT_Float64
    GEOTIFF_DRIVER_NAME = 'GTiff'
    SPATIAL_REFERENCE_SYSTEM_WKID = 4326
    BBOX = bbox
    FILE = filename

    data = remap(FILE, BBOX, 2, 'NETCDF').ReadAsArray()

    xres = abs(BBOX[0] - BBOX[2]) / data.shape[1]
    yres = abs(BBOX[1] - BBOX[3]) / data.shape[0]

    geotransform = (BBOX[0], xres, 0, BBOX[3], 0, -yres)

    # create the 3-band raster file
    dst_ds = gdal.GetDriverByName(GEOTIFF_DRIVER_NAME)\
    .Create(output, data.shape[1], data.shape[0], 1, GDAL_DATA_TYPE)

    dst_ds.SetGeoTransform(geotransform)  # specify coords
    srs = osr.SpatialReference()  # establish encoding
    srs.ImportFromEPSG(SPATIAL_REFERENCE_SYSTEM_WKID)
    dst_ds.SetProjection(srs.ExportToWkt())  # export coords to file
    dst_ds.GetRasterBand(1).WriteArray(data)  # write a-band to the raster
    dst_ds.FlushCache()  # write to disk
    dst_ds = None

    print(output, 'created')
Esempio n. 4
0
def test_remap():
    image = cv2.imread(sys.argv[1])
    cv2.imshow('source',image)
    source_image = torch.Tensor(image).transpose(0,2).transpose(1,2)
    intrinsics_s = torch.Tensor([[718.8560,0,607.1928],[0,718.8960,185.2152],[0,0,1]]) 
    intrinsics_t = torch.Tensor([[800,0,320],[0,800,240],[0,0,1]]) 
    target_image_shape = (640,480)
    target_image =remap(source_image.unsqueeze(0),intrinsics_s.unsqueeze(0),intrinsics_t.unsqueeze(0),target_image_shape)
    target_image_show = target_image[0].squeeze().transpose(0,2).transpose(0,1)
    cv2.imshow('target',np.array(target_image_show)/255)
    cv2.waitKey()
Esempio n. 5
0
def compute_angles(arm, target_frame):
    from remap import remap
    import math 
    
    # compute the inverse Kinematics and store the angles for each joint
    #
    angles = arm.inverse_kinematics(target_frame)
    
    # convert the angle from radian to degrees
    #
    for (i, _) in enumerate(angles):
        angles[i] = math.degrees(angles[i])    
        
    # remap the coordinates for each servo using Brandon's lOgIc
    # remap each angle using Brandon's LoGic 
    # print each angle in degrees and position for debugging
    #
    for i in range(4, -1, -1):
        angles[i] = remap(angles=angles, id=i)
        print("angle({}) = {} deg, {} pos".format(i, angles[i], int(angles[i]/0.24)))

    return angles 
Esempio n. 6
0
dst_dir = './'

print('Build IC file from the following file:')
print(file)
print(' ')

src_grd = pycnal_toolbox.CGrid_GLORYS.get_nc_CGrid_GLORYS(
    '/archive/u1/uaf/kate/GLORYS/GL2V1_mesh_mask_new.nc',
    name='GLORYS',
    area='npolar',
    ystart=690)
dst_grd = pycnal.grid.get_ROMS_grid('ARCTIC2')

# remap
zeta = remap(file, 'sossheig', src_grd, dst_grd, dst_dir=dst_dir)
remap(file, 'iicethic', src_grd, dst_grd, dst_dir=dst_dir)
remap(file, 'ileadfra', src_grd, dst_grd, dst_dir=dst_dir)
remap(file, 'iicetemp', src_grd, dst_grd, dst_dir=dst_dir)
dst_grd = pycnal.grid.get_ROMS_grid('ARCTIC2', zeta=zeta)
remap(file, 'votemper', src_grd, dst_grd, dst_dir=dst_dir)
remap(file, 'vosaline', src_grd, dst_grd, dst_dir=dst_dir)
#remap_uv(file, src_grd, dst_grd, dst_dir=dst_dir)

# merge file
ic_file = dst_dir + file.rsplit('/')[-1][:-4] + '_ic_' + dst_grd.name + '.nc'

out_file = dst_dir + file.rsplit(
    '/')[-1][:-4] + '_sossheig_ic_' + dst_grd.name + '.nc'
command = ('ncks', '-a', '-O', out_file, ic_file)
subprocess.call(command)
Esempio n. 7
0
from remap import remap
from remap_uv import remap_uv

file = '/archive/u1/uaf/kate/SODA/1985/SODA_2.1.6_19841230-19850104.cdf'
dst_dir='./'

print 'Build IC file from the following file:'
print file
print ' '

src_grd = pyroms_toolbox.BGrid_SODA.get_nc_BGrid_SODA('/archive/u1/uaf/kate/SODA/SODA_grid.cdf', name='SODA_2.1.6_ARC', area='global')
dst_grd = pyroms.grid.get_ROMS_grid('ARCTIC')

# remap
zeta = remap(file, 'ssh', src_grd, dst_grd, dst_dir=dst_dir)
dst_grd = pyroms.grid.get_ROMS_grid('ARCTIC', zeta=zeta)
remap(file, 'temp', src_grd, dst_grd, dst_dir=dst_dir)
remap(file, 'salt', src_grd, dst_grd, dst_dir=dst_dir)
remap_uv(file, src_grd, dst_grd, dst_dir=dst_dir)

# merge file
ic_file = dst_dir + file.rsplit('/')[-1][:-4] + '_ic_' + dst_grd.name + '.nc'

out_file = dst_dir + file.rsplit('/')[-1][:-4] + '_ssh_ic_' + dst_grd.name + '.nc'
command = ('ncks', '-a', '-O', out_file, ic_file)
#subprocess.check_call(command)
subprocess.call(command)
os.remove(out_file)
out_file = dst_dir + file.rsplit('/')[-1][:-4] + '_temp_ic_' + dst_grd.name + '.nc'
command = ('ncks', '-a', '-A', out_file, ic_file)
Esempio n. 8
0
num_maps = 1
map_method = 'bilinear'

pyroms.remapping.compute_remap_weights(grid1_file, grid2_file, \
              interp_file1, interp_file2, map1_name, \
              map2_name, num_maps, map_method)

# load the grid
src_grd = get_nc_Grid_HYCOM(src_grd_file)
dst_grd = pyroms.grid.get_ROMS_grid(grid_name)

# Triggering of variables remapping

zero=731;l_time=732			#2006-01-01 - 731; 2009-01-01 - 1827

zeta = remap(zero,l_time, file, 'ssh', src_grd, dst_grd, grid_name)

remap(zero,l_time, file, 'votemper', src_grd, dst_grd, grid_name)
remap(zero,l_time, file, 'vosaline', src_grd, dst_grd, grid_name)
remap_uv(zero,l_time, file,  src_grd, dst_grd, grid_name)

# merge file
ic_file = '/home/eivanov/coawst_data_prrocessing/Temporal/Input_files_to_ROMS/ChildRiver_Initial.nc'
try:
	os.remove(ic_file)
except:
	pass

out_file = 'ssh%s.nc' %(grid_name)
command = ('ncks', '-a', '-A', out_file, ic_file) 
subprocess.check_call(command)
Esempio n. 9
0
def plot(sistemas_convectivos_nc, glm_nc, local, extent, resolution=2):

    if (local == 'Brasil'):
        degrees = 10
        label_fontsize = 50
    elif (local == 'Sudeste'):
        degrees = 5
        label_fontsize = 8
    else:
        degrees = 2
        resolution = 0.8
        label_fontsize = 8

    g16glm = Dataset(glm_nc, 'r')
    nc = Dataset(sistemas_convectivos_nc)

    # Get the latitude and longitude image bounds
    geo_extent = nc.variables['geospatial_lat_lon_extent']
    min_lon = float(geo_extent.geospatial_westbound_longitude)
    max_lon = float(geo_extent.geospatial_eastbound_longitude)
    min_lat = float(geo_extent.geospatial_southbound_latitude)
    max_lat = float(geo_extent.geospatial_northbound_latitude)

    # Choose the visualization extent (min lon, min lat, max lon, max lat)
    #extent = [-45.0, -24.5, -39.0, -20.7]

    # Choose the image resolution (the higher the number the faster the processing is)
    #resolution = 0.8 #2

    # Calculate the image extent required for the reprojection
    H = nc.variables['goes_imager_projection'].perspective_point_height
    x1 = nc.variables['x_image_bounds'][0] * H
    x2 = nc.variables['x_image_bounds'][1] * H
    y1 = nc.variables['y_image_bounds'][1] * H
    y2 = nc.variables['y_image_bounds'][0] * H

    # Call the reprojection funcion
    grid = remap(sistemas_convectivos_nc, extent, resolution, x1, y1, x2, y2)
    tipos = ["todos", "event", "group", "flash"]
    for formato in range(4):
        glm_variables = [False, False, False, False]
        glm_variables[formato] = True
        #print(glm_variables)
        # Read the data returned by the function ==============================================================
        # If it is an IR channel subtract 273.15 to convert to ° Celsius
        data = grid.ReadAsArray() - 273.15

        # Make pixels outside the footprint invisible
        data[data <= -180] = np.nan

        # Define the size of the saved picture =================================================================
        DPI = 150
        fig = plt.figure(figsize=(data.shape[1] / float(DPI),
                                  data.shape[0] / float(DPI)),
                         frameon=False,
                         dpi=DPI)
        ax = plt.Axes(fig, [0., 0., 1., 1.])
        ax.set_axis_off()
        fig.add_axes(ax)
        ax = plt.axis('off')

        # Plot the Data =======================================================================================

        # Create the basemap reference for the Rectangular Projection
        bmap = Basemap(llcrnrlon=extent[0],
                       llcrnrlat=extent[1],
                       urcrnrlon=extent[2],
                       urcrnrlat=extent[3],
                       epsg=4326)

        # Draw the countries and Brazilian states shapefiles
        bmap.readshapefile('/home/cendas/GOES16_WS_Rodrigo/GLM/src/BRA_adm1',
                           'BRA_adm1',
                           linewidth=0.50,
                           color='#000000')

        if (local == 'Brasil'):
            bmap.readshapefile(
                '/home/cendas/GOES16_WS_Rodrigo/GLM/src/ne_10m_coastline',
                'ne_10m_coastline',
                linewidth=0.50,
                color='#000000')

        #ne_10m_coastline
        # Draw parallels and meridians
        if (not (local == 'Brasil')):
            bmap.drawparallels(np.arange(-90.0, 90.0, degrees),
                               linewidth=0.3,
                               dashes=[4, 4],
                               color='white',
                               labels=[True, False, False, True],
                               fmt='%g',
                               labelstyle="+/-",
                               size=8)
            bmap.drawmeridians(np.arange(0.0, 360.0, degrees),
                               linewidth=0.3,
                               dashes=[4, 4],
                               color='white',
                               labels=[True, False, False, True],
                               fmt='%g',
                               labelstyle="+/-",
                               size=8)
        else:
            bmap.drawparallels(np.arange(-90.0, 90.0, degrees),
                               linewidth=0.3,
                               dashes=[4, 4],
                               color='white',
                               labels=[True, False, False, True],
                               fmt='%g',
                               labelstyle="+/-",
                               size=30)
            bmap.drawmeridians(np.arange(0.0, 360.0, degrees),
                               linewidth=0.3,
                               dashes=[4, 4],
                               color='white',
                               labels=[True, False, False, True],
                               fmt='%g',
                               labelstyle="+/-",
                               size=30)
        #Split the dataset with temperatures above and below -20°C
        temp = -80
        tempAbove = masked_array(data, data < temp)
        tempBelow = masked_array(data, data >= temp)

        # Converts a CPT file to be used in Python

        cptSquareRoot = loadCPT(
            '/home/cendas/GOES16_WS_Rodrigo/GLM/src/Square Root Visible Enhancement.cpt'
        )
        # Makes a linear interpolation
        cpt_convert_SquareRoot = LinearSegmentedColormap('cpt', cptSquareRoot)

        # Plot the GOES-16 channel with the converted CPT colors (you may alter the min and max to match your preference)
        plot_SquareRoot = bmap.imshow(tempAbove,
                                      origin='upper',
                                      cmap=cpt_convert_SquareRoot,
                                      vmin=-80,
                                      vmax=100)

        # ===================== LEGENDA ==========================

        # Get the unit based on the channel. If channels 1 trough 6 is Albedo. If channels 7 to 16 is BT.
        Unit = "Cloud Top Temperature [°C]"

        # Choose a title for the plot
        Title = " Geostationary Lightning Mapper (GLM) - GOES Satellite"
        Latitude = "Latitude"
        Longitude = "Longitude"

        # Add a black rectangle in the bottom to insert the image description
        lon_difference = (extent[2] - extent[0])  # Max Lon - Min Lon
        # Add the image description inside the black rectangle
        lat_difference = (extent[3] - extent[1])  # Max lat - Min lat
        if (not (local == 'Brasil')):
            #Labels and its positions #
            plt.text(extent[0] + lon_difference * 0.5,
                     extent[3] + lat_difference * 0.035,
                     Title,
                     horizontalalignment='center',
                     color='black',
                     size=9)

            plt.text(extent[0] + lon_difference * 0.5,
                     extent[3] + lat_difference * 0.065,
                     " ",
                     horizontalalignment='center',
                     color='black',
                     size=10)

            plt.text(extent[0] + lon_difference * 0.5,
                     extent[1] - lat_difference * 0.11,
                     Longitude,
                     horizontalalignment='center',
                     color='black',
                     size=10)

            plt.text(extent[0] + lon_difference * 0.5,
                     extent[1] - lat_difference * 0.15,
                     " ",
                     horizontalalignment='center',
                     color='black',
                     size=18)

            plt.text(extent[0] - lon_difference * 0.15,
                     extent[1] + lat_difference * 0.5,
                     Latitude,
                     verticalalignment='center',
                     rotation="vertical",
                     color='black',
                     size=10)

        else:
            plt.text(extent[0] + lon_difference * 0.5,
                     extent[3] + lat_difference * 0.035,
                     Title,
                     horizontalalignment='center',
                     color='black',
                     size=40)

            plt.text(extent[0] + lon_difference * 0.5,
                     extent[3] + lat_difference * 0.065,
                     " ",
                     horizontalalignment='center',
                     color='black',
                     size=10)

            plt.text(extent[0] + lon_difference * 0.5,
                     extent[1] - lat_difference * 0.11,
                     Longitude,
                     horizontalalignment='center',
                     color='black',
                     size=40)

            plt.text(extent[0] + lon_difference * 0.5,
                     extent[1] - lat_difference * 0.15,
                     " ",
                     horizontalalignment='center',
                     color='black',
                     size=18)

            plt.text(extent[0] - lon_difference * 0.15,
                     extent[1] + lat_difference * 0.5,
                     Latitude,
                     verticalalignment='center',
                     rotation="vertical",
                     color='black',
                     size=40)

        # ========================================
        if (glm_variables[0]):  #Todos
            # Get Events, Group and flash from Glm file
            event_lat = g16glm.variables['event_lat'][:]
            event_lon = g16glm.variables['event_lon'][:]

            group_lat = g16glm.variables['group_lat'][:]
            group_lon = g16glm.variables['group_lon'][:]

            flash_lat = g16glm.variables['flash_lat'][:]
            flash_lon = g16glm.variables['flash_lon'][:]

            # Plot events as large blue dots
            event_x, event_y = bmap(event_lon, event_lat)
            bmap.plot(event_x, event_y, 'bo', markersize=7, label='Events')

            # Plot groups as medium green dots
            group_x, group_y = bmap(group_lon, group_lat)
            bmap.plot(group_x, group_y, 'go', markersize=3, label='Group')

            # Plot flashes as small red dots
            flash_x, flash_y = bmap(flash_lon, flash_lat)
            bmap.plot(flash_x, flash_y, 'ro', markersize=1, label='Flash')
            plt.legend(fontsize=label_fontsize, loc=4)
        else:
            if (glm_variables[1]):
                # Get Events from Glm file
                event_lat = g16glm.variables['event_lat'][:]
                event_lon = g16glm.variables['event_lon'][:]
                # Plot events as large blue dots
                event_x, event_y = bmap(event_lon, event_lat)
                bmap.plot(event_x, event_y, 'bo', markersize=7, label='Events')
            if (glm_variables[2]):
                # Get Group from Glm file
                group_lat = g16glm.variables['group_lat'][:]
                group_lon = g16glm.variables['group_lon'][:]
                # Plot groups as medium green dots
                group_x, group_y = bmap(group_lon, group_lat)
                bmap.plot(group_x, group_y, 'go', markersize=3, label='Group')
            if (glm_variables[3]):
                # Get Flash from Glm file
                flash_lat = g16glm.variables['flash_lat'][:]
                flash_lon = g16glm.variables['flash_lon'][:]
                # Plot flashes as small red dots
                flash_x, flash_y = bmap(flash_lon, flash_lat)
                bmap.plot(flash_x, flash_y, 'ro', markersize=1, label='Flash')
            plt.legend(fontsize=label_fontsize, loc=4)
            #plt.show()
        Start = glm_nc[glm_nc.find('_s') + 1:glm_nc.find("_e") - 3]
        year = int(Start[1:5])
        dayjulian = int(
            Start[5:8]) - 1  # Subtract 1 because the year starts at "0"
        dayconventional = datetime.datetime(year, 1, 1) + datetime.timedelta(
            dayjulian)  # Convert from julian to conventional
        month = dayconventional.strftime('%m')
        day = dayconventional.strftime('%d')
        hour = int(Start[8:12])

        plt.savefig('/home/cendas/GOES16_WS_Rodrigo/GLM/Output/' + local +
                    '/glm_' + str(year) + str(month) + str(day) + '_' +
                    str(hour) + '_' + tipos[formato] + '.png',
                    dpi=DPI,
                    pad_inches=0,
                    transparent=True,
                    bbox_inches='tight')
        plt.close()
Esempio n. 10
0
file = '/nfs/P1/Data/SODA/SODA_2.1.6/SODA_2.1.6_20031231-20040105.cdf'
dst_dir = './'

print('Build IC file from the following file:')
print(file)
print(' ')

src_grd = pycnal_toolbox.BGrid_SODA.get_nc_BGrid_SODA(
    '/nfs/P1/Data/SODA/SODA_2.1.6/SODA_grid.cdf',
    name='SODA_2.1.6',
    area='npolar',
    ystart=240)
dst_grd = pycnal.grid.get_ROMS_grid('ARCTIC2')

# remap
zeta = remap(file, 'ssh', src_grd, dst_grd, dst_dir=dst_dir)
dst_grd = pycnal.grid.get_ROMS_grid('ARCTIC2', zeta=zeta)
remap(file, 'temp', src_grd, dst_grd, dst_dir=dst_dir)
remap(file, 'salt', src_grd, dst_grd, dst_dir=dst_dir)
remap_uv(file, src_grd, dst_grd, dst_dir=dst_dir)

# merge file
ic_file = dst_dir + file.rsplit('/')[-1][:-4] + '_ic_' + dst_grd.name + '.nc'

out_file = dst_dir + file.rsplit(
    '/')[-1][:-4] + '_ssh_ic_' + dst_grd.name + '.nc'
command = ('ncks', '-a', '-O', out_file, ic_file)
#subprocess.check_call(command)
subprocess.call(command)
os.remove(out_file)
out_file = dst_dir + file.rsplit(
Esempio n. 11
0
from remap import remap
from remap_uv import remap_uv

file = '/archive/u1/uaf/kate/GLORYS/GLORYS2V3_1dAV_19980101_19980102.nc'

dst_dir='./'

print 'Build IC file from the following file:'
print file
print ' '

src_grd = pyroms_toolbox.CGrid_GLORYS.get_nc_CGrid_GLORYS('/archive/u1/uaf/kate/GLORYS/GL2V1_mesh_mask_new.nc', name='GLORYS', area='npolar', ystart=690)
dst_grd = pyroms.grid.get_ROMS_grid('ARCTIC2')

# remap
zeta = remap(file, 'sossheig', src_grd, dst_grd, dst_dir=dst_dir)
remap(file, 'iicethic', src_grd, dst_grd, dst_dir=dst_dir)
remap(file, 'ileadfra', src_grd, dst_grd, dst_dir=dst_dir)
remap(file, 'iicetemp', src_grd, dst_grd, dst_dir=dst_dir)
dst_grd = pyroms.grid.get_ROMS_grid('ARCTIC2', zeta=zeta)
remap(file, 'votemper', src_grd, dst_grd, dst_dir=dst_dir)
remap(file, 'vosaline', src_grd, dst_grd, dst_dir=dst_dir)
#remap_uv(file, src_grd, dst_grd, dst_dir=dst_dir)

# merge file
ic_file = dst_dir + file.rsplit('/')[-1][:-4] + '_ic_' + dst_grd.name + '.nc'

out_file = dst_dir + file.rsplit('/')[-1][:-4] + '_sossheig_ic_' + dst_grd.name + '.nc'
command = ('ncks', '-a', '-O', out_file, ic_file) 
subprocess.call(command)
os.remove(out_file)
Esempio n. 12
0
import pyroms; from Get_grid import Get_grid_Mercator_Nest; from Get_grid import Get_grid_Mercator_Parent; from make_remap_grid_file import make_remap_grid_file; from remap import remap

src_grd_file = '/media/sf_Swap-between-windows-linux/New_Grid/TEMP_SALT_CURR_2004_2014.nc'
dst_grd_file = 'Temp_Bot_One_Parent.nc'

srcgrd = Get_grid_Mercator_Parent(src_grd_file)
dstgrd = pyroms.grid.get_ROMS_grid('COARSEST')

make_remap_grid_file(srcgrd)
pyroms.remapping.make_remap_grid_file(dstgrd, Cpos='rho'); pyroms.remapping.make_remap_grid_file(dstgrd, Cpos='u'); pyroms.remapping.make_remap_grid_file(dstgrd, Cpos='v')

# compute remap weights input namelist variables for bilinear remapping at rho points
grid1_file = 'remap_grid_MERCATOR_PARENT_t.nc'
grid2_file = 'remap_grid_COARSEST_rho.nc'
interp_file1 = 'remap_weights_MERCATOR_PARENT_to_COARSEST_bilinear_t_to_rho.nc'
interp_file2 = 'remap_weights_COARSEST_to_MERCATOR_PARENT_bilinear_rho_to_t.nc'
map1_name = 'MERCATOR_PARENT to COARSEST Bilinear Mapping'
map2_name = 'COARSEST to MERCATOR_PARENT Bilinear Mapping'
num_maps = 1
map_method = 'bilinear'
pyroms.remapping.compute_remap_weights(grid2_file, grid1_file, interp_file2, interp_file1, map2_name, map1_name, num_maps, map_method)


tart=0; tend=1095*24
wts='remap_weights_COARSEST_to_MERCATOR_PARENT_bilinear_rho_to_t.nc'
remap(tart, tend, dst_grd_file, 'temp', wts, dstgrd, srcgrd, src_grd_file, dst_dir='./')
def create_dataframe_abi2(path_abi, time):
    files = [os.path.join(path_abi, file) for file in os.listdir(path_abi)]
    df = gpd.read_file(os.path.join(HERE, 'shapefiles/estadosl_2007.shp'))

    print(files[0])
    data = dict()
    data['start_scan'] = []
    data['end_scan'] = []
    data['year'] = []
    data['julian_day'] = []
    data['hour'] = []
    data['minute'] = []
    data['state'] = []
    data['min'] = []
    data['mean'] = []
    data['std'] = []
    data['max'] = []
    data['timestamp'] = []
    timestamp = time['t']

    for file in files:
        if not file.endswith('.nc'):
            continue
        filename = file.split('/')[-1]

        start_scan = filename[27:41]
        end_scan = filename[43:57]
        y = start_scan[:4]
        jd = start_scan[4:7]
        h = start_scan[7:9]
        m = start_scan[9:11]

        for _, state in df.iterrows():

            print('Geting values from %s...' % state['NOMEUF2'])
            bbox = state['geometry'].bounds
            grid = remap(file, bbox, 1, 'NETCDF').ReadAsArray()
            data['min'].append(np.min(grid))
            data['mean'].append(np.mean(grid))
            data['max'].append(np.max(grid))
            data['std'].append(np.std(grid))
            data['state'].append(state['NOMEUF2'])
            data['start_scan'].append(start_scan)
            data['end_scan'].append(end_scan)
            data['year'].append(y)
            data['julian_day'].append(jd)
            data['hour'].append(h)
            data['minute'].append(m)
            data['timestamp'].append(timestamp)

    output_csv = '/home/adriano/earth-observation/.data/csv/abi'  #path_abi.replace('nc', 'csv')
    csv_filename = '%s__' % time['t']
    csv_filename += '%s_s%s%s%s%s' % ('ABI-L2-CMIPF', time['y'], time['d'],
                                      time['h'], time['m'][0])
    csv_filename += '_e%s%s%s%s.csv' % (time['y'], time['d'], time['h'],
                                        time['m'][-1])

    if not os.path.exists(output_csv):
        os.makedirs(output_csv)
    df = pd.DataFrame(data)
    filename = os.path.join(output_csv, csv_filename)
    df.to_csv(filename, index=False)

    print('CSV ABI file saved in ', filename)
def create_dataframe_abi(path_abi, time):
    print('Creating ABI dataframe...')
    files = [os.path.join(path_abi, file) for file in os.listdir(path_abi)]
    df = load_states()

    print(files[0])
    data = dict()
    data['start_scan'] = []
    data['end_scan'] = []
    data['year'] = []
    data['julian_day'] = []
    data['hour'] = []
    data['minute'] = []
    data['lon'] = []
    data['lat'] = []
    data['state'] = []
    data['value'] = []
    data['ind_x'] = []
    data['ind_y'] = []
    data['rows'] = []
    data['cols'] = []
    data['timestamp'] = []
    timestamp = time['t']

    for file in files:
        filename = file.split('/')[-1]

        start_scan = filename[27:41]
        end_scan = filename[43:57]
        y = start_scan[:4]
        jd = start_scan[4:7]
        h = start_scan[7:9]
        m = start_scan[9:11]

        for _, state in df.iterrows():
            print('Geting values from %s...' % state['NOMEUF2'])
            bbox = state['geometry'].bounds
            grid = remap(file, bbox, 1, 'NETCDF').ReadAsArray()
            lons = np.linspace(bbox[0], bbox[2], grid.shape[1])
            lats = np.linspace(bbox[1], bbox[3], grid.shape[0])
            rows = grid.shape[0]
            cols = grid.shape[1]
            for x in range(rows):
                for y in range(cols):
                    data['rows'].append(rows)
                    data['cols'].append(cols)
                    data['ind_x'].append(x)
                    data['ind_y'].append(y)
                    data['lon'].append(lons[y])
                    data['lat'].append(lats[x])
                    data['value'].append(grid[x][y])
                    data['state'].append(state['NOMEUF2'])
                    data['start_scan'].append(start_scan)
                    data['end_scan'].append(end_scan)
                    data['year'].append(y)
                    data['julian_day'].append(jd)
                    data['hour'].append(h)
                    data['minute'].append(m)
                    data['timestamp'].append(timestamp)

    output_csv = path_abi.replace('nc', 'csv')
    csv_filename = '%s__' % time['t']
    csv_filename += '%s_s%s%s%s%s' % ('ABI-L2-CMIPF', time['y'], time['d'],
                                      time['h'], time['m'][0])
    csv_filename += '_e%s%s%s%s.csv' % (time['y'], time['d'], time['h'],
                                        time['m'][-1])

    if not os.path.exists(output_csv):
        os.makedirs(output_csv)
    df = pd.DataFrame(data)
    filename = os.path.join(output_csv, csv_filename)
    df.to_csv(filename, index=False)
Esempio n. 15
0
def func(dst_grd_file,order):
	if order=='PARENT':
		srcgrd1 = Get_grid_ODYSSEA_Parent(src_grd_file1)
		srcgrd2 = Get_grid_Mercator_Parent(src_grd_file2)
		grid='COARSEST'
		dstgrd = pyroms.grid.get_ROMS_grid(grid)
		pyroms.remapping.make_remap_grid_file(dstgrd, Cpos='rho')
	elif order=='NEST':
		srcgrd1 = Get_grid_ODYSSEA_Nest(src_grd_file1)
		srcgrd2 = Get_grid_Mercator_Nest(src_grd_file2)
		grid='FINER'
		dstgrd = pyroms.grid.get_ROMS_grid(grid)
		pyroms.remapping.make_remap_grid_file_2(dstgrd, Cpos='rho')

	#### Uncomment if you want to compute weights between two grid ####

	make_remap_grid_file(srcgrd1)
	make_remap_grid_file(srcgrd2)

	# compute remap weights input namelist variables for bilinear remapping at rho points
	grid1_file = 'remap_grid_ODYSSEA_%s_t.nc' %(order)
	grid2_file = 'remap_grid_%s_rho.nc' %(grid)
	interp_file1 = 'remap_weights_ODYSSEA_%s_to_%s_bilinear_t_to_rho.nc' %(order,grid)
	interp_file2 = 'remap_weights_%s_to_ODYSSEA_%s_bilinear_rho_to_t.nc' %(grid,order)
	map1_name = 'ODYSSEA_%s to %s Bilinear Mapping' %(order,grid)
	map2_name = '%s to ODYSSEA_%s Bilinear Mapping' %(grid,order)
	num_maps = 1
	map_method = 'bilinear'
	pyroms.remapping.compute_remap_weights(grid2_file, grid1_file, interp_file2, interp_file1, map2_name, map1_name, num_maps, map_method)

	grid1_file = 'remap_grid_MERCATOR_%s_t.nc' %(order)
	grid2_file = 'remap_grid_%s_rho.nc' %(grid)
	interp_file1 = 'remap_weights_MERCATOR_%s_to_%s_bilinear_t_to_rho.nc' %(order,grid)
	interp_file2 = 'remap_weights_%s_to_MERCATOR_%s_bilinear_rho_to_t.nc' %(grid,order)
	map1_name = 'MERCATOR_%s to %s Bilinear Mapping' %(order,grid)
	map2_name = '%s to MERCATOR_%s Bilinear Mapping' %(grid,order)
	num_maps = 1
	map_method = 'bilinear'
	pyroms.remapping.compute_remap_weights(grid2_file, grid1_file, interp_file2, interp_file1, map2_name, map1_name, num_maps, map_method)

	tt=365*3
        dst_grd_file = '/home/eivanov/coawst_data_prrocessing/Temporal/Former/' + dst_grd_file
	wts = 'remap_weights_%s_to_ODYSSEA_%s_bilinear_rho_to_t.nc' %(grid,order)
	remap(tt, dst_grd_file, 'sst', wts, dstgrd, srcgrd1, src_grd_file1,order,grid)

	wts = 'remap_weights_%s_to_MERCATOR_%s_bilinear_rho_to_t.nc' %(grid,order)
	remap(tt, dst_grd_file, 'sbt', wts, dstgrd, srcgrd2, src_grd_file2,order,grid)
	remap(tt, dst_grd_file, 'sss', wts, dstgrd, srcgrd2, src_grd_file2,order,grid)
	remap(tt, dst_grd_file, 'sbs', wts, dstgrd, srcgrd2, src_grd_file2,order,grid)
	remap(tt, dst_grd_file, 'ssu', wts, dstgrd, srcgrd2, src_grd_file2,order,grid)
	remap(tt, dst_grd_file, 'ssv', wts, dstgrd, srcgrd2, src_grd_file2,order,grid)
	remap(tt, dst_grd_file, 'sbu', wts, dstgrd, srcgrd2, src_grd_file2,order,grid)
	remap(tt, dst_grd_file, 'sbv', wts, dstgrd, srcgrd2, src_grd_file2,order,grid)

	a='sstODYSSEA_%s.nc' %(order)
	b='%s_sstODYSSEA_%s.nc' %(dst_grd_file[:-3],order)
	os.rename(a,b)

	ic_file = dst_grd_file[:-3]+'_replottedMERCATOR_%s.nc' %(order)
	cycle=['sbt','sss','sbs','ssu','ssv','sbu','sbv']
	for i in range(len(cycle)):
		out_file = '%sMERCATOR_%s.nc' %(cycle[i],order)
		command = ('ncks', '-a', '-A', out_file, ic_file) 
		subprocess.check_call(command)
		os.remove(out_file)
Esempio n. 16
0
random.seed(42)

# Load stock data
eod_data = load_stock_data()

# Loop through all stocks returned
for key, data in eod_data.items():

    # Process data
    processed_data = process_data(data)

    X, Y = [], []
    for idx in range(0, len(processed_data)-WINDOW-FORECAST, STEP):

        # Get data from window
        hl = remap(np.array(processed_data['H-L'][idx:idx+WINDOW]), -1, 1)
        co = remap(np.array(processed_data['C-O'][idx:idx+WINDOW]), -1, 1)
        sma_3 = remap(np.array(processed_data['3day SMA'][idx:idx+WINDOW]), -1, 1)
        sma_10 = remap(np.array(processed_data['10day SMA'][idx:idx+WINDOW]), -1, 1)
        sma_30 = remap(np.array(processed_data['30day SMA'][idx:idx+WINDOW]), -1, 1)
        std_dev = remap(np.array(processed_data['Std_dev'][idx:idx+WINDOW]), -1, 1)
        rsi = remap(np.array(processed_data['RSI'][idx:idx+WINDOW]), -1, 1)

        # Stack in array
        x_i = np.column_stack((hl, co, sma_3, sma_10, sma_30, std_dev, rsi))

        # Get forecast value
        last_close = processed_data['C'][idx + WINDOW]
        next_close = processed_data['C'][idx + WINDOW + FORECAST]

        if last_close < next_close:
Esempio n. 17
0
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from netCDF4 import Dataset
from remap import remap
import geopandas as gpd

file = "data/2017/10/2/OR_ABI-L2-CMIPF-M3C02_G16_s20172750930388_e20172750941155_c20172750941226.nc"

#bbox = [-53.08059692, -25.25489044, -44.20065689, -19.78015137]

shapefile = 'shapes/Brazilian_States_Shape/BRA_adm1.shp'
shp = gpd.read_file(shapefile)
state = shp[shp['ADM1'] == 'SAO PAULO']
bbox = state.bounds.values[0]

grid = remap(file, bbox, 2, 'NETCDF')
data = grid.ReadAsArray()

#DPI = 150
#ax = plt.figure(figsize=(2000/float(DPI), 2000/float(DPI)), frameon=True, dpi=DPI)

bmap = Basemap(projection='merc',
               llcrnrlon=bbox[0],
               llcrnrlat=bbox[1],
               urcrnrlon=bbox[2],
               urcrnrlat=bbox[3] + 0.5,
               epsg=4326,
               resolution='i')

bmap.bluemarble()
bmap.imshow(data, cmap='jet', alpha=.8)
# Bocaina as a Center of the projection
degrees = 5
# Choose the visualization extent (min lon, min lat, max lon, max lat)
extent = [-45 - degrees, -23.7 - degrees, -43.4 + degrees, -22.5 + degrees]
# Choose the image resolution (the higher the number the faster the processing is)
resolution = 2

# Calculate the image extent required for the reprojection
H = nc.variables['goes_imager_projection'].perspective_point_height
x1 = nc.variables['x_image_bounds'][0] * H
x2 = nc.variables['x_image_bounds'][1] * H
y1 = nc.variables['y_image_bounds'][1] * H
y2 = nc.variables['y_image_bounds'][0] * H

# Call the reprojection funcion
gridCH1 = remap(pathCH1, extent, resolution, x1, y1, x2, y2)
gridCH2 = remap(pathCH2, extent, resolution, x1, y1, x2, y2)
gridCH3 = remap(pathCH3, extent, resolution, x1, y1, x2, y2)

# Read the data returned by the function
R = gridCH2.ReadAsArray()
G = gridCH3.ReadAsArray()
B = gridCH1.ReadAsArray()

# Apply range limits for each channel. RGB values must be between 0 and 1
R = np.clip(R, 0, 1)
G = np.clip(G, 0, 1)
B = np.clip(B, 0, 1)

# Apply the gamma correction
gamma = 2.2
Esempio n. 19
0
for filein in filelst:
    tag = filein.replace(data_dir + '/' + my_year + '/',
                         '').replace('soda3.3.1_5dy_ocean_reg_',
                                     '').replace('.nc', '')
    print '\nBuild OBC file for time %s' % tag
    zeta_dst_file = dst_dir + dst_grd.name + '_IC_zeta_' + tag + '_' + src_grd.name + '.nc'
    temp_dst_file = dst_dir + dst_grd.name + '_IC_temp_' + tag + '_' + src_grd.name + '.nc'
    salt_dst_file = dst_dir + dst_grd.name + '_IC_salt_' + tag + '_' + src_grd.name + '.nc'
    u_dst_file = dst_dir + dst_grd.name + '_IC_u_' + tag + '_' + src_grd.name + '.nc'
    v_dst_file = dst_dir + dst_grd.name + '_IC_v_' + tag + '_' + src_grd.name + '.nc'

    # remap ssh
    zeta = remap('ssh',
                 filein,
                 src_grd,
                 dst_grd,
                 zeta_dst_file,
                 dst_dir=dst_dir)

    # reload grid with zeta (more accurate)
    dst_grd = pyroms.grid.get_ROMS_grid('ARCTIC4', zeta=zeta)

    # regrid temp, salt and velocities
    remap('temp', filein, src_grd, dst_grd, temp_dst_file, dst_dir=dst_dir)
    remap('salt', filein, src_grd, dst_grd, salt_dst_file, dst_dir=dst_dir)
    remap_uv(filein, src_grd, dst_grd, u_dst_file, v_dst_file, dst_dir=dst_dir)

    # merge file
    IC_file = dst_dir + dst_grd.name + '_IC_' + tag + '_' + src_grd.name + '.nc'

    command1 = 'mv ' + zeta_dst_file + ' ' + IC_file
Esempio n. 20
0
filein=data_dir + 'soda3.3.1_5dy_ocean_reg_' + tag + '.nc'

# load grids
src_grd = pyroms_toolbox.BGrid_GFDL.get_nc_BGrid_GFDL(data_dir + 'grid/SODA3_0.5deg_grid.nc', name='SODA3.3.1', xrange=(400, 500), yrange=(180, 280))
dst_grd = pyroms.grid.get_ROMS_grid('CCS')

print '\nBuild IC file from %s' %filein

zeta_dst_file = dst_dir + dst_grd.name + '_ic_zeta_' + tag + '_' + src_grd.name + '.nc'
temp_dst_file = dst_dir + dst_grd.name + '_ic_temp_' + tag + '_' + src_grd.name + '.nc'
salt_dst_file = dst_dir + dst_grd.name + '_ic_salt_' + tag + '_' + src_grd.name + '.nc'
u_dst_file    = dst_dir + dst_grd.name + '_ic_u_'    + tag + '_' + src_grd.name + '.nc'
v_dst_file    = dst_dir + dst_grd.name + '_ic_v_'    + tag + '_' + src_grd.name + '.nc'

# remap ssh
zeta = remap('ssh', filein, src_grd, dst_grd, zeta_dst_file, dst_dir=dst_dir)

# reload grid with zeta (more accurate)
dst_grd = pyroms.grid.get_ROMS_grid('CCS', zeta=zeta)

# regrid temp, salt and velocities
remap('temp',filein, src_grd, dst_grd, temp_dst_file, dst_dir=dst_dir)
remap('salt',filein, src_grd, dst_grd, salt_dst_file, dst_dir=dst_dir)
remap_uv(filein, src_grd, dst_grd, u_dst_file, v_dst_file, dst_dir=dst_dir)

# merge file
ic_file = dst_dir + dst_grd.name + '_ic_' + tag + '_' + src_grd.name + '.nc'

command1 = 'mv '      + zeta_dst_file + ' '    + ic_file
command2 = 'ncks -A ' + temp_dst_file + ' -o ' + ic_file
command3 = 'ncks -A ' + salt_dst_file + ' -o ' + ic_file
Esempio n. 21
0
degrees = 0
# Choose the visualization extent (min lon, min lat, max lon, max lat)
extent = [-46 - degrees, -26 - degrees, -40 + degrees,
          -19 + degrees]  #Regiao MetroSerra

# Choose the image resolution (the higher the number the faster the processing is)
resolution = 0.8  #Standard max resolution without lose information = 2
# Calculate the image extent required for the reprojection
H = nc.variables['goes_imager_projection'].perspective_point_height
x1 = nc.variables['x_image_bounds'][0] * H
x2 = nc.variables['x_image_bounds'][1] * H
y1 = nc.variables['y_image_bounds'][1] * H
y2 = nc.variables['y_image_bounds'][0] * H
# Call the reprojection funcion
grid = remap(path, extent, resolution, x1, y1, x2, y2)

# Search for the GOES-16 channel in the file name
bandSetted = False

bands = ['M6C', 'M3C']
bandLenghts = [
    '01', '02', '03', '04', '05', '06', '07', '08', '09', '10', '11', '12',
    '13', '14', '15', '16'
]
mode = 0
while not bandSetted:
    Band = (path[path.find(bands[mode]) + 3:path.find("_G16")])
    #if (len(Band) != 2) and (Band not in bandBounds):
    if (Band not in bandLenghts):
        mode += 1
Esempio n. 22
0

file = "/archive/u1/uaf/kate/HYCOM/SCS/data/HYCOM_GLBa0.08_2015_001.nc"
data_dir = "/archive/u1/uaf/kate/HYCOM/SCS/data/"
dst_dir = "./"

print "Build IC file from the following file:"
print file
print " "

src_grd_file = data_dir + "../HYCOM_GLBa0.08_PALAU_grid.nc"
src_grd = pyroms_toolbox.Grid_HYCOM.get_nc_Grid_HYCOM(src_grd_file)
dst_grd = pyroms.grid.get_ROMS_grid("PALAU1")

# remap
zeta = remap(file, "ssh", src_grd, dst_grd, dst_dir=dst_dir)
dst_grd = pyroms.grid.get_ROMS_grid("PALAU1", zeta=zeta)
remap(file, "temp", src_grd, dst_grd, dst_dir=dst_dir)
remap(file, "salt", src_grd, dst_grd, dst_dir=dst_dir)
remap_uv(file, src_grd, dst_grd, dst_dir=dst_dir)

# merge file
ic_file = dst_dir + file.rsplit("/")[-1][:-3] + "_ic_" + dst_grd.name + ".nc"

out_file = dst_dir + file.rsplit("/")[-1][:-3] + "_ssh_ic_" + dst_grd.name + ".nc"
command = ("ncks", "-a", "-O", out_file, ic_file)
print command
subprocess.check_call(command)
os.remove(out_file)
out_file = dst_dir + file.rsplit("/")[-1][:-3] + "_temp_ic_" + dst_grd.name + ".nc"
command = ("ncks", "-a", "-A", out_file, ic_file)