lines = f_mesh.readlines() nF = len(lines)-1 nX = int(lines[0].split(',')[1]) truestates = np.zeros((nF, nX*4), dtype = np.float32) predstates = np.zeros((nF, nX*4), dtype = np.float32) for i in range(1,nF+1): line = lines[i] truestates[i-1,:] = [float(x) for x in line.split(',')[1:]] predstates[0,:] = truestates[0,:] rms_vel = np.zeros(nF) rms_pos = np.zeros(nF) flowstream = FlowStream(flow_in) ret_flow, flowframe = flowstream.read() kf = IteratedKalmanFilter(distmesh, frame, flowframe, cuda = cuda, sparse = sparse) self = kf.state #Test labels #with self._fbo4: # m = gloo.read_pixels() #np.max(m[:,:,2]) #np.sum(m[:,:,2] == 255) #np.unique(m[:,:,2]) #kf.state.E[0] #kf.state.labels #np.unique(m[:,:,1]) ################################################################################
def runIEKF(eps_Z, eps_J, eps_M, eps_F): print 'Running with:' print '- eps_Z:', eps_Z print '- eps_J:', eps_J print '- eps_M:', eps_M print '- eps_F:', eps_F if mask_flow: notes = 'masked_iekf' else: notes = 'iekf' notes += '_eps_Z_%f'%eps_Z notes += '_eps_J_%f'%eps_J notes += '_eps_M_%f'%eps_M notes += '_eps_F_%f'%eps_F img_out = './synthetictests/' + name + '/' + ff + '_' + notes + '_pred/' if not os.path.isdir(img_out): os.makedirs(img_out) print 'Loading synthetic data streams' capture = VideoStream(v_in, threshold) frame = capture.current_frame() mask, ctrs, fd = capture.backsub() distmesh = DistMesh(frame, h0 = gridsize) distmesh.load(dm_in) #Load true data f_mesh = open(m_in, 'r') lines = f_mesh.readlines() nF = len(lines)-1 nX = int(lines[0].split(',')[1]) truestates = np.zeros((nF, nX*4), dtype = np.float32) predstates = np.zeros((nF, nX*4), dtype = np.float32) for i in range(1,nF+1): line = lines[i] truestates[i-1,:] = [float(x) for x in line.split(',')[1:]] predstates[0,:] = truestates[0,:] rms_vel = np.zeros(nF) rms_pos = np.zeros(nF) flowstream = FlowStream(flow_in) ret_flow, flowframe = flowstream.read() kf = IteratedKalmanFilter(distmesh, frame, flowframe, cuda = cuda, sparse = sparse,\ eps_F = eps_F, eps_Z = eps_Z, eps_J = eps_J, eps_M = eps_M, nI = nI) count = 0 print 'Tracking with Kalman filter' while(capture.isOpened() and count < max_frames): #for idx in range(1): count += 1 ret, frame, grayframe, mask = capture.read() ret_flow, flowframe = flowstream.read() if ret is False or ret_flow is False: break print 'Frame %d' % count kf.compute(grayframe, flowframe, mask, maskflow = mask_flow, imageoutput = img_out+'solution_frame_%03d'%count) #kf.compute(grayframe, flowframe, mask, maskflow = mask_flow) predstates[count,:] = np.squeeze(kf.state.X) r_pos = truestates[count,0:(2*nX)]-predstates[count,0:(2*nX)] r_vel = truestates[count,(2*nX):]-predstates[count,(2*nX):] rms_pos[count] = np.sqrt(np.mean(np.multiply(r_pos, r_pos))) rms_vel[count] = np.sqrt(np.mean(np.multiply(r_vel, r_vel))) print 'RMS_pos:', rms_pos[count], 'RMS_vel:', rms_vel[count] print 'Saving' np.savez('./synthetictests/' + name + '/' + ff + '_' + notes + '_pred.npz', predstates, truestates, rms_pos, rms_vel) print 'Done... how\'d we do?' #Make plot of tracking error plt.plot(range(nF), rms_pos, label='RMS position') plt.plot(range(nF), rms_vel, label='RMS velocity') plt.legend(loc='upper left') plt.ylabel('RMS') plt.xlabel('Frame') plt.savefig('./synthetictests/' + name + '/' + ff + '_' + notes + '_pred_rms.eps')
def main(): usage = """run_kalmanfilter.py [input_avi_file] [optic_flow_path] [output_avi_file] [threshold] HydraGL. State space model using an extended Kalman filter to track Hydra in video Dependencies: -Vispy* -Numpy -PyCuda** -DistMesh -HDF -OpenCV2 -matplotlib Notes: * Uses OpenGL rendering. If using remotely, you'll need to set up a VirtualGL server ** If have a CUDA compatible graphics card Example: ./run_kalmanfilter.py ./video/johntest_brightcontrast_short.avi ... ./video/johntest_brightcontrast_short/flow ./video/output.avi -s 15 For help: ./run_kalmanfilter.py -h Ben Lansdell 02/16/2016 """ parser = argparse.ArgumentParser() parser.add_argument('fn_in', default='./video/johntest_brightcontrast_short.avi', help='input video file, any format readable by OpenCV', nargs = '?') parser.add_argument('flow_in', default='./video/johntest_brightcontrast_short/flow', help='input optic flow path', nargs = '?') parser.add_argument('fn_out', default='./video/johntest_brightcontrast_short_output.avi', help='avi output video file', nargs='?') parser.add_argument('-n', '--name', default='johntest_brightcontrast_short', help='name for saving run images', nargs='?') parser.add_argument('-t', '--threshold', default=9, help='threshold intensity below which is background', type = int) parser.add_argument('-s', '--gridsize', default=22, help='edge length for mesh (smaller is finer; unstable much further below 18)', type = int) parser.add_argument('-c', '--cuda', default=True, help='whether or not to do analysis on CUDA', type = bool) args = parser.parse_args() if len(sys.argv) == 1: print("No command line arguments provided, using defaults") capture = VideoStream(args.fn_in, args.threshold) frame = capture.current_frame() mask, ctrs, fd = capture.backsub() distmesh = DistMesh(frame, h0 = args.gridsize) distmesh.createMesh(ctrs, fd, frame, plot = True) #Load flow data from directory flowstream = FlowStream(args.flow_in) ret_flow, flowframe = flowstream.peek() if ret_flow: kf = IteratedMSKalmanFilter(distmesh, frame, flowframe, cuda = args.cuda, sparse = True, multi = True) else: print 'Cannot read flow stream' return #kf.compute(capture.gray_frame(), flowframe) nI = 3 count = 0 while(capture.isOpened()): count += 1 print 'Frame %d' % count ret, frame, grayframe, mask = capture.read() ret_flow, flowframe = flowstream.read() if ret is False or ret_flow is False: break #for i in range(nI): # print 'Iteration %d' % i # raw_input("Finished. Press Enter to continue") # kf.compute(grayframe, flowframe) kf.compute(grayframe, flowframe, mask, imageoutput = 'screenshots/' + args.name + '_frame_' + str(count)) capture.release() output.release() cv2.destroyAllWindows() raw_input("Finished. Press ENTER to exit")
def main(argv): if len(argv) < 3: print 'Not enough arguments' return ff = argv[1] name = argv[2] if len(argv) == 4: flownotes = argv[3] elif len(argv) == 3: flownotes = '' else: print 'Too many arguments' return #name = 'square5_gradient_texture_rot2' #name = 'square4_gradient_texture_rot1' #name = 'square3_gradient_texture' #name = 'square2_gradient' #name = 'square1' #name = 'hydra1' #ff = 'translate_leftup_stretch' #ff = 'translate_leftup' cuda = True sparse = True #Brox flow: #flownotes = '' #flownotes = '_solver_it_20' #flownotes = '_solver_it_5' #flownotes = '_inner_it_20' #flownotes = '_inner_it_5' #flownotes = '_alpha_0.4' #flownotes = '_alpha_0.1' #flownotes = '_gamma_100' #flownotes = '_gamma_25' #DeepFlow #flownotes = '_deep' #SimpleFlow #flownotes = '_simple' m_in = './synthetictests/' + name + '/' + ff + '_mesh.txt' #Video and Brox flow in v_in = './synthetictests/' + name + '/' + ff + '/' + ff + '.avi' flow_in = './synthetictests/' + name + '/' + ff + '/' + ff + '_flow' + flownotes #Output img_out = './synthetictests/' + name + '/' + ff + '_testflow' + flownotes + '/' if not os.path.isdir(img_out): os.makedirs(img_out) threshold = 8 print 'Loading synthetic data streams' capture = VideoStream(v_in, threshold) frame = capture.current_frame() mask, ctrs, fd = capture.backsub() f_mesh = open(m_in, 'r') lines = f_mesh.readlines() nF = len(lines)-1 nX = frame.shape[0] flowstream = FlowStream(flow_in) ret_flow, flowframe = flowstream.read() rms_flow = np.zeros(nF) true_flow = np.zeros((nX, nX, 2)) rel_abs_res = np.zeros((nF, nX, nX)) abs_res = np.zeros((nF, nX, nX)) video = np.zeros((nF, nX, nX)) samp_frac = 0.1 count = 0 print 'Comparing true flow to computed flow' abs_flow_sample = [] abs_res_sample = [] video_sample = [] while(capture.isOpened()): count += 1 ret, frame, grayframe, mask = capture.read() ret_flow, flowframe = flowstream.read() if ret is False or ret_flow is False: break print 'Frame %d'%count video[count,:,:] = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #Compute true flow based on all points in object undergoing flow field #Find all pts in mask #.... HORRIBLY horribly slow for i in range(nX): for j in range(nX): m = mask[i,j] (fx, fy) = flowfields[ff]((i,j),0) true_flow[i,j,:] = [fx*m, fy*m] res = m*(true_flow[i,j,:] - flowframe[i,j,:]) abs_res[count,i,j] = np.sqrt(np.sum(res*res)) if m > 0: rel_abs_res[count,i,j] = np.sqrt(np.sum(res*res))/np.sqrt(fx*fx+fy*fy) u = np.random.uniform() if u < samp_frac: abs_flow_sample += [np.sqrt(fx*fx+fy*fy)] abs_res_sample += [abs_res[count,i,j]] video_sample += [video[count,i,j]] #Load computed flow and compare r = true_flow - flowframe s = np.sum(mask) rms_flow[count] = np.sqrt(np.sum(np.multiply(r, r))/s) plt.clf() plt.imshow(abs_res[count,:,:]) plt.colorbar() plt.savefig(img_out + 'flow_abs_res_%03d.png'%count) plt.clf() plt.imshow(rel_abs_res[count,:,:]) plt.colorbar() plt.savefig(img_out + 'flow_rel_abs_res_%03d.png'%count) #cv2.imwrite(img_out + 'flow_abs_res_%03d.png'%count, abs_res[count,:,:]) print 'RMS_flow:', rms_flow[count] print 'Done... how\'d we do?' df = pd.DataFrame({'abs_flow_sample':pd.Series(abs_flow_sample),\ 'abs_res_sample':pd.Series(abs_res_sample),\ 'video_sample':pd.Series(video_sample)}) #Save output df.to_pickle(img_out + "flow_errors.pkl") np.save(img_out + "rms_flow.npz",rms_flow) g1 = sns.jointplot("video_sample", "abs_res_sample", data = df, kind="kde", color="b") g1.savefig(img_out + 'intensity_abs_res.eps') g2 = sns.jointplot("abs_flow_sample", "abs_res_sample", data = df, kind="kde", color="b") g2.savefig(img_out + 'flow_abs_res.eps') #Plot abs error in flow vs abs magnitude of flow plt.clf() plt.plot(range(nF), rms_flow, label='RMS flow') plt.legend(loc='upper left') plt.ylabel('RMS') plt.xlabel('Frame') plt.savefig(img_out + 'flow_rms.eps')