Esempio n. 1
0
def draw_detections_3D(image, detections, cam, model_map):
    """Draws 6D detections onto resized image

        Parameters
        ----------
        image: Numpy array, normalized to [0-1]
        detections: A list of detections for this image, coming from SSD.detect() in the form
            [l, t, r, b, name, confidence, 6D_pose0, ..., 6D_poseN]
        cam: Intrinsics for rendering
        model_map: Mapping of model name to Model3D instance {'obj': model3D}

    """
    if not detections:
        return np.copy(image)

    ren = Renderer((image.shape[1], image.shape[0]), cam)
    ren.clear()
    out = np.copy(image)
    for det in detections:
        model = model_map[det[4]]
        for pose in det[6:]:
            ren.draw_model(model, pose)
            ren.draw_boundingbox(model, pose)
    col, dep = ren.finish()

    # Copy the rendering over into the scene
    mask = np.dstack((dep, dep, dep)) > 0
    out[mask] = col[mask]
    return out
Esempio n. 2
0
def draw_detections_3D(image, detections, cam, model_map):
    """Draws 6D detections onto resized image

        Parameters
        ----------
        image: Numpy array, normalized to [0-1]
        detections: A list of detections for this image, coming from SSD.detect() in the form
            [l, t, r, b, name, confidence, 6D_pose0, ..., 6D_poseN]
        cam: Intrinsics for rendering
        model_map: Mapping of model name to Model3D instance {'obj': model3D}

    """
    if not detections:
        return np.copy(image)

    ren = Renderer((image.shape[1], image.shape[0]), cam)
    ren.clear()
    out = np.copy(image)
    for det in detections:
        model = model_map[det[4]]
        for pose in det[6:]:
            ren.draw_model(model, pose)
            ren.draw_boundingbox(model, pose)
    col, dep = ren.finish()

    # Copy the rendering over into the scene
    mask = np.dstack((dep, dep, dep)) > 0
    out[mask] = col[mask]
    return out
Esempio n. 3
0
def precompute_projections(dataset, views, cam, model_map, models):
    """Precomputes the projection information needed for 6D pose construction
    """
    save_path = f"output/{dataset}"  # save the rendered images
    if not os.path.exists(save_path):
        os.makedirs(save_path)

    w, h = 640, 480

    ren = Renderer((w, h), cam)
    for model_name in models:
        count = 0  # 图片计数
        scene_camera = {}
        scene_gt = {}
        model_path = os.path.join(save_path, model_name[-6:])
        rgb_dir = os.path.join(model_path, 'rgb')
        depth_dir = os.path.join(model_path, 'mask')
        ensure_dir(rgb_dir)
        ensure_dir(depth_dir)

        for i in tqdm(range(len(views))):
            pose = create_pose(views[i], angle_deg=0)
            pose[:3, 3] = [0, 0, 0.5]  # zr = 0.5
            model = model_map[model_name]  # 随机选出一个模型
            ren.clear()
            ren.draw_model(model, pose)
            # ren.draw_boundingbox(model, pose)
            col, dep = ren.finish()  # dep 缩放因子是0.001
            col *= 255
            dep[dep > 0] = 255
            # cam2d = project(model.fps, pose, cam)
            # ys, xs = np.nonzero(dep > 0)
            # xs_min = xs_original.min()
            # ys_min = ys_original.min()
            # xs_max = xs_original.max()
            # ys_max = ys_original.max()
            scene_camera[str(i)] = {
                'cam_K': cam.flatten().tolist(),
                'depth_scale': 1,
                'view_level': 4,
            }

            scene_gt[str(i)] = [{
                'cam_R_m2c': pose[:3, :3].flatten().tolist(),
                'cam_t_m2c': pose[:3, 3].flatten().tolist(),
                'obj_id': int(model_name[-2:])
            }]
            # draw fps
            # for i_p, point in enumerate(cam2d):
            #     if i_p == 0:
            #         col = cv2.circle(col, (point[0], point[1]), 3, (0, 255, 0), thickness=-1)
            #     else:
            #         col = cv2.circle(col, (point[0], point[1]), 3, (0, 0, 255), thickness=-1)
            cv2.imwrite(os.path.join(rgb_dir, str(count).zfill(6) + '.png'), col)
            cv2.imwrite(os.path.join(depth_dir, str(count).zfill(6) + '_000000' + '.png'), dep)
            count += 1
        save_json(os.path.join(model_path, 'scene_camera.json'), scene_camera)
        save_json(os.path.join(model_path, 'scene_gt.json'), scene_gt)
Esempio n. 4
0
def verify_6D_poses(detections, model_map, cam, image):
    """For one image, select for each detection the best pose from the 6D pool

    # Arguments
        detections: List of predictions for one image. Each prediction is:
                [xmin, ymin, xmax, ymax, label, confidence,
                (pose00), ..., (poseNM)] where poseXX is a 4x4 matrix
        model_map: Mapping of model name to Model3D instance {'obj': model3D}
        cam: Intrinsics to use for backprojection
        image: The scene color image

    # Returns
        filtered: List of predictions for one image.
                Each prediction has the form:
                [xmin, ymin, xmax, ymax, label, confidence, pose] where pose is a 4x4 matrix

    """
    def compute_grads_and_mags(color):
        gray = cv2.cvtColor(color, cv2.COLOR_BGR2GRAY)
        grads = np.dstack(
            (cv2.Sobel(gray, cv2.CV_32F, 1, 0,
                       ksize=5), cv2.Sobel(gray, cv2.CV_32F, 0, 1, ksize=5)))
        mags = np.sqrt(np.sum(grads**2, axis=2)) + 0.001  # To avoid div/0
        grads /= np.dstack((mags, mags))
        mask = mags < 5
        mags[mask] = 0
        grads[np.dstack((mask, mask))] = 0
        return grads, mags

    scene_grads, scene_mags = compute_grads_and_mags(image)
    scene_grads = np.reshape(scene_grads, (-1, 2))
    #cv2.imshow('mags', scene_mags)

    ren = Renderer((image.shape[1], image.shape[0]), cam)
    filtered = []
    for det in detections:
        model = model_map[det[4]]
        scores = []
        for pose in det[6:]:
            ren.clear()
            ren.draw_model(model, pose)
            ren_grads, ren_mags = compute_grads_and_mags(ren.finish()[0])
            ren_grads = np.reshape(ren_grads, (-1, 2))
            dot = np.sum(
                np.abs(ren_grads[:, 0] * scene_grads[:, 0] +
                       ren_grads[:, 1] * scene_grads[:, 1]))
            sum = np.sum(ren_mags > 0)
            scores.append(dot / sum)
        new_det = det[:6]
        new_det.append(
            det[6 + np.argmax(np.asarray(scores))])  # Put best pose first
        filtered.append(new_det)

    return filtered
Esempio n. 5
0
def verify_6D_poses(detections, model_map, cam, image):
    """For one image, select for each detection the best pose from the 6D pool

    # Arguments
        detections: List of predictions for one image. Each prediction is:
                [xmin, ymin, xmax, ymax, label, confidence,
                (pose00), ..., (poseNM)] where poseXX is a 4x4 matrix
        model_map: Mapping of model name to Model3D instance {'obj': model3D}
        cam: Intrinsics to use for backprojection
        image: The scene color image

    # Returns
        filtered: List of predictions for one image.
                Each prediction has the form:
                [xmin, ymin, xmax, ymax, label, confidence, pose] where pose is a 4x4 matrix

    """

    def compute_grads_and_mags(color):
        gray = cv2.cvtColor(color, cv2.COLOR_BGR2GRAY)
        grads = np.dstack((cv2.Sobel(gray, cv2.CV_32F, 1, 0, ksize=5),
                           cv2.Sobel(gray, cv2.CV_32F, 0, 1, ksize=5)))
        mags = np.sqrt(np.sum(grads**2, axis=2)) + 0.001  # To avoid div/0
        grads /= np.dstack((mags, mags))
        mask = mags < 5
        mags[mask] = 0
        grads[np.dstack((mask, mask))] = 0
        return grads, mags

    scene_grads, scene_mags = compute_grads_and_mags(image)
    scene_grads = np.reshape(scene_grads, (-1, 2))
    #cv2.imshow('mags', scene_mags)

    ren = Renderer((image.shape[1], image.shape[0]), cam)
    filtered = []
    for det in detections:
        model = model_map[det[4]]
        scores = []
        for pose in det[6:]:
            ren.clear()
            ren.draw_model(model, pose)
            ren_grads, ren_mags = compute_grads_and_mags(ren.finish()[0])
            ren_grads = np.reshape(ren_grads, (-1, 2))
            dot = np.sum(np.abs(ren_grads[:, 0]*scene_grads[:, 0] + ren_grads[:, 1]*scene_grads[:, 1]))
            sum = np.sum(ren_mags>0)
            scores.append(dot / sum)
        new_det = det[:6]
        new_det.append(det[6 + np.argmax(np.asarray(scores))])  # Put best pose first
        filtered.append(new_det)

    return filtered
Esempio n. 6
0
def precompute_projections(views, inplanes, cam, model3D):
    """Precomputes the projection information needed for 6D pose construction

    # Arguments
        views: List of 3D viewpoint positions
        inplanes: List of inplane angles in degrees
        cam: Intrinsics to use for translation estimation
        model3D: Model3D instance

    # Returns
        data: a 3D list with precomputed entities with shape
            (views, inplanes, (4x4 pose matrix, 3) )
    """
    w, h = 640, 480
    ren = Renderer((w, h), cam)
    data = []
    if model3D.vertices is None:
        return data

    for v in tqdm(range(len(views))):
        data.append([])
        for i in inplanes:
            pose = create_pose(views[v], angle_deg=i)
            pose[:3, 3] = [0, 0, 0.5]  # zr = 0.5

            # Render object and extract tight 2D bbox and projected 2D centroid
            ren.clear()
            ren.draw_model(model3D, pose)
            box = np.argwhere(
                ren.finish()[1])  # Deduct bbox from depth rendering
            box = [
                box.min(0)[1],
                box.min(0)[0],
                box.max(0)[1] + 1,
                box.max(0)[0] + 1
            ]
            centroid = np.matmul(pose[:3, :3], model3D.centroid) + pose[:3, 3]
            centroid_x = cam[0, 2] + centroid[0] * cam[0, 0] / centroid[2]
            centroid_y = cam[1, 2] + centroid[1] * cam[1, 1] / centroid[2]

            # Compute 2D centroid position in normalized, box-local reference frame
            box_w, box_h = (box[2] - box[0]), (box[3] - box[1])
            norm_centroid_x = (centroid_x - box[0]) / box_w
            norm_centroid_y = (centroid_y - box[1]) / box_h

            # Compute normalized diagonal box length
            lr = np.sqrt((box_w / w)**2 + (box_h / h)**2)
            data[-1].append((pose, [norm_centroid_x, norm_centroid_y, lr]))
    return data
Esempio n. 7
0
def precompute_projections(views, inplanes, cam, model3D):
    """Precomputes the projection information needed for 6D pose construction

    # Arguments
        views: List of 3D viewpoint positions
        inplanes: List of inplane angles in degrees
        cam: Intrinsics to use for translation estimation
        model3D: Model3D instance

    # Returns
        data: a 3D list with precomputed entities with shape
            (views, inplanes, (4x4 pose matrix, 3) )
    """
    w, h = 640, 480
    ren = Renderer((w, h), cam)
    data = []
    if model3D.vertices is None:
        return data

    for v in tqdm(range(len(views))):
        data.append([])
        for i in inplanes:
            pose = create_pose(views[v], angle_deg=i)
            pose[:3, 3] = [0, 0, 0.5]  # zr = 0.5

            # Render object and extract tight 2D bbox and projected 2D centroid
            ren.clear()
            ren.draw_model(model3D, pose)
            box = np.argwhere(ren.finish()[1])  # Deduct bbox from depth rendering
            box = [box.min(0)[1], box.min(0)[0], box.max(0)[1] + 1, box.max(0)[0] + 1]
            centroid = np.matmul(pose[:3, :3], model3D.centroid) + pose[:3, 3]
            centroid_x = cam[0, 2] + centroid[0] * cam[0, 0] / centroid[2]
            centroid_y = cam[1, 2] + centroid[1] * cam[1, 1] / centroid[2]

            # Compute 2D centroid position in normalized, box-local reference frame
            box_w, box_h = (box[2] - box[0]), (box[3] - box[1])
            norm_centroid_x = (centroid_x - box[0]) / box_w
            norm_centroid_y = (centroid_y - box[1]) / box_h

            # Compute normalized diagonal box length
            lr = np.sqrt((box_w / w) ** 2 + (box_h / h) ** 2)
            data[-1].append((pose, [norm_centroid_x, norm_centroid_y, lr]))
    return data
        _, gt_pose, _ = frame.gt[0]

        perturbed_pose = perturb_pose(gt_pose, max_rot_pert, max_trans_pert)

        refinable = Refinable(model=bench.models[str(int(obj))], label=0, hypo_pose=perturbed_pose,
                              metric_crop_shape=croppings[dataset_name]['obj_{:02d}'.format(int(obj))], input_col=col)

        for i in range(iterations):
            refinable.input_col = col.copy()

            start = timer()
            refiner.iterative_contour_alignment(refinable=refinable, max_iterations=1)
            end = timer()

            # Rendering of results
            ren.clear()
            ren.draw_background(col)
            ren.draw_boundingbox(refinable.model, refinable.hypo_pose)
            ren.draw_model(refinable.model, refinable.hypo_pose, ambient=0.5, specular=0, shininess=100,
                           light_col=[1, 1, 1], light=[0, 0, -1])
            render_col, _ = ren.finish()
            render_col = render_col.copy()

            cv2.imshow("Input Image", col)

            # Draw FPS in top left corner
            fps = "FPS: " + str(int(1 / (end - start)))

            cv2.rectangle(render_col, (0, 0), (133, 40), (1., 1., 1.), -1)
            cv2.putText(render_col, fps, (3, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)