Esempio n. 1
0
    def batch(self, batch_size, shuffle):
        """Returns generator of batch images.

        Args:
            batch_size (int): size of a batch.
        Returns:
            (ndarray): Images(4 dimension) of input data for Network.
              If including labels, return with transformed labels
        """
        if shuffle:
            perm = np.random.permutation(self._data_size)
        else:
            perm = np.arange(self._data_size)
        batches = [
            perm[i * batch_size:(i + 1) * batch_size]
            for i in range(int(np.ceil(self._data_size / batch_size)))
        ]

        imgfiles = [[self._data_table[p] for p in b] for b in batches]
        imgs = ImageLoader(imgfiles, self._color)
        for p, imgs in zip(batches, imgs.wait_images()):
            # Case: we are given both images and labels
            if self._data_y is not None:
                data_y = self._data_y[p].copy()
                for index, img in enumerate(imgs):
                    label = np.array([data_y[index]], dtype=np.float32)
                    if self._color == "GRAY":
                        img = np.array(img, dtype=np.float32)[:, :, np.newaxis]
                    else:
                        img = np.array(img, dtype=np.float32)
                    image, data_y[index] = resize(img,
                                                  size=self._imsize,
                                                  labels=label,
                                                  num_class=len(
                                                      self._class_list))
                    imgs[index] = image[0]
                if self._augmentation is not None:
                    imgs, data_y = self._augmentation.create(
                        np.array(imgs, dtype=np.float32),
                        labels=data_y,
                        num_class=len(self._class_list))
                imgs = np.array(imgs, dtype=np.float32).transpose((0, 3, 1, 2))
                yield imgs, data_y
            # Case: we are only given images
            else:
                for index, img in enumerate(imgs):
                    if self._color == "GRAY":
                        img = np.array(img, dtype=np.float32)[:, :, np.newaxis]
                    else:
                        img = np.array(img, dtype=np.float32)
                    imgs[index] = resize(img, size=self._imsize)[0]
                if self._augmentation is not None:
                    imgs = self._augmentation.create(
                        np.array(imgs, dtype=np.float32))
                imgs = np.array(imgs, dtype=np.float32).transpose((0, 3, 1, 2))
                yield imgs
Esempio n. 2
0
    def batch(self, batch_size, shuffle):
        """
        :param int batch_size: size of a batch.
        :return: Images(4 dimension) of input data for Network. If including labels, return with original labels
        :rtype: ndarray
        """
        if shuffle:
            perm = np.random.permutation(self._data_size)
        else:
            perm = np.arange(self._data_size)
        batches = [perm[i * batch_size:(i + 1) * batch_size]
                   for i in range(int(np.ceil(self._data_size / batch_size)))]

        imgfiles = [[self._data_table[p] for p in b] for b in batches]
        labels = [[self._data_y[p] for p in b] for b in batches]

        imgs = ImageLoader(imgfiles, self._color)

        for lbls, imgs in itertools.izip(labels, imgs.wait_images()):
            for index, img in enumerate(imgs):
                if self._color == "GRAY":
                    img = np.array(img, dtype=np.float32)[:, :, np.newaxis]
                else:
                    img = np.array(img, dtype=np.float32)
                imgs[index] = resize(img, size=self._imsize)[0]
            if self._augmentation is not None:
                imgs = self._augmentation.create(np.array(imgs, dtype=np.float32))
            lbls = np.array(lbls)
            imgs = np.array(imgs, dtype=np.float32).transpose(0, 3, 1, 2)
            if self._data_y is None:
                yield imgs
            yield imgs, lbls
Esempio n. 3
0
File: zoom.py Progetto: yygr/ReNom
    def transform(self, x, random=False, labels=None, num_class=0):
        """Performs a Zoom transformation of a Numpy Images.
        if x is a Batch, apply Zoom transform to Batch.
        needs zoom_rate (has to be > 1.0). If you use Random transformation, Zoom will be done
        randomly for values between the two limits given by the tuple or from 1 to zoom_rate.

        :param ndarray x: 3 or 4(batch) dimensional Image
        :param bool random: If True, apply random transformation.
        :param ndarray labels: rectangle labels(2-dimensional array).
            ex:) np.array([[center x, center y, x_top_left, height, 0, 0, 0, 1, 0]])
        :param int num_class: number of class of datasets (for rectangle transformation)
        :return: Images(4 dimension) of zoom transformed. If including labels, return with transformed labels
        :rtype: ndarray

        :Example:
        >>> from renom.utility.image.data_augmentation.zoom import Zoom
        >>> from PIL import Image as im
        >>> import matplotlib.pyplot as plt
        >>> import numpy as np
        >>> image = im.open(image path) # ex:) "./image_folder/camera.jpg"
        >>> image = np.array(image).astype(np.float32)
        >>> zo = Zoom(zoom_rate=2)
        >>> zoom_image = zo.transform(image, random=True)
        >>> fig, axes = plt.subplots(2, 1)
        >>> axes[0].imshow(image/255); axes[0].set_title("Original Image")
        >>> axes[1].imshow(zoom_image[0] / 255); axes[1].set_title("Zoom One Image")
        >>> plt.show()


        """
        zoom_images, batch_size, original_size = self.check_x_dim(x.copy())
        transformed_labels = None

        if random:
            if isinstance(self.zoom_rate, tuple):
                zoom_rate = np.random.uniform(self.zoom_rate[0],
                                              self.zoom_rate[1], batch_size)
            else:
                zoom_rate = np.random.uniform(1.0, self.zoom_rate, batch_size)
            if labels is not None:
                transformed_labels = labels.copy()
                for index, (image, label, rate) in enumerate(
                        zip(zoom_images, transformed_labels, zoom_rate)):
                    crop_size = (int(float(original_size[0]) / rate),
                                 int(float(original_size[1]) / rate))
                    image, transformed_label = crop(image,
                                                    size=crop_size,
                                                    random=True,
                                                    labels=np.array([label]),
                                                    num_class=num_class)
                    zoom_images[index], transformed_label = resize(
                        image,
                        size=original_size,
                        labels=transformed_label,
                        num_class=num_class)
                    transformed_labels[index] = transformed_label[0]
            else:
                for index, (image,
                            rate) in enumerate(zip(zoom_images, zoom_rate)):
                    crop_size = (int(float(original_size[0]) / rate),
                                 int(float(original_size[1]) / rate))
                    image = crop(image, size=crop_size, random=True)
                    zoom_images[index] = resize(image, size=original_size)
        else:
            crop_size = (int(float(original_size[0]) / self.zoom_rate),
                         int(float(original_size[1]) / self.zoom_rate))
            if labels is not None:
                zoom_images, transformed_labels = crop(zoom_images,
                                                       size=crop_size,
                                                       labels=labels,
                                                       num_class=num_class)
                zoom_images, transformed_labels = resize(
                    zoom_images,
                    size=original_size,
                    labels=transformed_labels,
                    num_class=num_class)
            else:
                zoom_images = crop(zoom_images, size=crop_size)
                zoom_images = resize(zoom_images, size=original_size)

        if labels is not None:
            return zoom_images, transformed_labels
        else:
            return zoom_images