Esempio n. 1
0
 def check_rortho(self):
     """
     check R-orthogonal
     """
     tensm = self.array.reshape([self.shape[0], np.prod(self.shape[1:])])
     s = xp.dot(tensm, tensm.T.conj())
     return allclose(s, xp.eye(s.shape[0]), atol=1e-3)
Esempio n. 2
0
 def check_lortho(self):
     """
     check L-orthogonal
     """
     tensm = self.array.reshape([np.prod(self.shape[:-1]), self.shape[-1]])
     s = xp.dot(tensm.T.conj(), tensm)
     return allclose(s, xp.eye(s.shape[0]), atol=1e-3)
Esempio n. 3
0
    def _call_impl(self, t):
        x = (t - self.t_old) / self.h
        if t.ndim == 0:
            p = xp.tile(x, self.order + 1)
            p = xp.cumprod(p)
        else:
            p = xp.tile(x, (self.order + 1, 1))
            p = xp.cumprod(p, axis=0)
        y = self.h * xp.dot(self.Q, p)
        if y.ndim == 2:
            y += self.y_old[:, None]
        else:
            y += self.y_old

        return y
Esempio n. 4
0
def rk_step(fun, t, y, f, h, A, B, C, E, K):
    """Perform a single Runge-Kutta step.

    This function computes a prediction of an explicit Runge-Kutta method and
    also estimates the error of a less accurate method.

    Notation for Butcher tableau is as in [1]_.

    Parameters
    ----------
    fun : callable
        Right-hand side of the system.
    t : float
        Current time.
    y : ndarray, shape (n,)
        Current state.
    f : ndarray, shape (n,)
        Current value of the derivative, i.e. ``fun(x, y)``.
    h : float
        Step to use.
    A : list of ndarray, length n_stages - 1
        Coefficients for combining previous RK stages to compute the next
        stage. For explicit methods the coefficients above the main diagonal
        are zeros, so `A` is stored as a list of arrays of increasing lengths.
        The first stage is always just `f`, thus no coefficients for it
        are required.
    B : ndarray, shape (n_stages,)
        Coefficients for combining RK stages for computing the final
        prediction.
    C : ndarray, shape (n_stages - 1,)
        Coefficients for incrementing time for consecutive RK stages.
        The value for the first stage is always zero, thus it is not stored.
    E : ndarray, shape (n_stages + 1,)
        Coefficients for estimating the error of a less accurate method. They
        are computed as the difference between b's in an extended tableau.
    K : ndarray, shape (n_stages + 1, n)
        Storage array for putting RK stages here. Stages are stored in rows.

    Returns
    -------
    y_new : ndarray, shape (n,)
        Solution at t + h computed with a higher accuracy.
    f_new : ndarray, shape (n,)
        Derivative ``fun(t + h, y_new)``.
    error : ndarray, shape (n,)
        Error estimate of a less accurate method.

    References
    ----------
    .. [1] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential
           Equations I: Nonstiff Problems", Sec. II.4.
    """
    K[0] = f
    for s, (a, c) in enumerate(zip(A, C)):
        dy = xp.dot(K[:s + 1].T, a) * h
        K[s + 1] = fun(t + c * h, y + dy)

    y_new = y + h * xp.dot(K[:-1].T, B)
    f_new = fun(t + h, y_new)

    K[-1] = f_new
    error = xp.dot(K.T, E) * h

    return y_new, f_new, error
Esempio n. 5
0
    def optimize_cv(self, lr_group, isite, percent=0.0):
        # depending on the spectratype, to restrict the exction
        first_LR = lr_group[0]
        second_LR = lr_group[1]
        constrain_qn = self.cv_mps.qntot
        # this function aims at solving the work equation of ZT CV-DMRG
        # L = <CV|op_a|CV>+2\eta<op_b|CV>, take a derivative to local CV
        # S-a-S-e-S                          S-a-S-d-S
        # |   d   |                          |   |   |
        # O-b-O-g-O  * CV[isite-1]  = -\eta  |   c   |
        # |   f   |                          |   |   |
        # S-c- -h-S                          S-b- -e-S

        # note to be a_mat * x = vec_b
        # the environment matrix

        if self.method == "1site":
            cidx = [isite - 1]
            first_L = asxp(first_LR[isite - 1])
            first_R = asxp(first_LR[isite])
            second_L = asxp(second_LR[isite - 1])
            second_R = asxp(second_LR[isite])
        else:
            cidx = [isite - 2, isite - 1]
            first_L = asxp(first_LR[isite - 2])
            first_R = asxp(first_LR[isite])
            second_L = asxp(second_LR[isite - 2])
            second_R = asxp(second_LR[isite])

        # this part just be similar with ground state calculation
        qnbigl, qnbigr, qnmat = self.cv_mps._get_big_qn(cidx)
        xshape = qnmat.shape
        nonzeros = int(np.sum(qnmat == constrain_qn))
        if self.method == '1site':
            guess = self.cv_mps[isite - 1][qnmat == constrain_qn]
            path_b = [([0, 1], "ab, acd->bcd"),
                      ([1, 0], "bcd, de->bce")]
            vec_b = multi_tensor_contract(
                path_b, second_L, self.b_mps[isite - 1], second_R
            )[qnmat == constrain_qn]
        else:
            guess = tensordot(
                self.cv_mps[isite - 2], self.cv_mps[isite - 1], axes=(-1, 0)
            )[qnmat == constrain_qn]
            path_b = [([0, 1], "ab, acd->bcd"),
                      ([2, 0], "bcd, def->bcef"),
                      ([1, 0], "bcef, fg->bceg")]
            vec_b = multi_tensor_contract(
                path_b, second_L, self.b_mps[isite - 2],
                self.b_mps[isite - 1], second_R
            )[qnmat == constrain_qn]

        if self.method == "2site":
            a_oper_isite2 = asxp(self.a_oper[isite - 2])
        else:
            a_oper_isite2 = None
        a_oper_isite1 = asxp(self.a_oper[isite - 1])

        # use the diagonal part of mat_a to construct the preconditinoner
        # for linear solver
        part_l = xp.einsum('abca->abc', first_L)
        part_r = xp.einsum('hfgh->hfg', first_R)
        if self.method == "1site":
            #  S-a   d    h-S
            #  O-b  -O-   f-O
            #  |     e      |
            #  O-c  -O-   g-O
            #  S-a   i    h-S
            path_pre = [([0, 1], "abc, bdef -> acdef"),
                        ([1, 0], "acdef, ceig -> adfig")]
            a_diag = multi_tensor_contract(path_pre, part_l, a_oper_isite1,
                                           a_oper_isite1)
            a_diag = xp.einsum("adfdg -> adfg", a_diag)
            a_diag = xp.tensordot(a_diag, part_r,
                                  axes=([2, 3], [1, 2]))[qnmat == constrain_qn]
        else:
            #  S-a   d     k   h-S
            #  O-b  -O- j -O-  f-O
            #  |     e     l   |
            #  O-c  -O- m -O-  g-O
            #  S-a   i     n   h-S
            # first left half, second right half, last contraction

            path_pre = [([0, 1], "abc, bdej -> acdej"),
                        ([1, 0], "acdej, ceim -> adjim")]
            a_diagl = multi_tensor_contract(path_pre, part_l, a_oper_isite2,
                                            a_oper_isite2)
            a_diagl = xp.einsum("adjdm -> adjm", a_diagl)

            path_pre = [([0, 1], "hfg, jklf -> hgjkl"),
                        ([1, 0], "hgjkl, mlng -> hjkmn")]
            a_diagr = multi_tensor_contract(path_pre, part_r, a_oper_isite1,
                                            a_oper_isite1)
            a_diagr = xp.einsum("hjkmk -> khjm", a_diagr)

            a_diag = xp.tensordot(
                a_diagl, a_diagr, axes=([2, 3], [2, 3]))[qnmat == constrain_qn]

        a_diag = asnumpy(a_diag + xp.ones(nonzeros) * self.eta**2)
        M_x = lambda x: x / a_diag
        pre_M = scipy.sparse.linalg.LinearOperator((nonzeros, nonzeros), M_x)

        count = 0

        # cache oe path
        if self.method == "2site":
            expr = oe.contract_expression(
                "abcd, befh, cfgi, hjkn, iklo, mnop, dglp -> aejm",
                first_L, a_oper_isite2, a_oper_isite2, a_oper_isite1,
                a_oper_isite1, first_R, xshape,
                constants=[0, 1, 2, 3, 4, 5])

        def hop(c):
            nonlocal count
            count += 1
            xstruct = asxp(cvec2cmat(xshape, c, qnmat, constrain_qn))
            if self.method == "1site":
                path_a = [([0, 1], "abcd, aef->bcdef"),
                          ([3, 0], "bcdef, begh->cdfgh"),
                          ([2, 0], "cdfgh, cgij->dfhij"),
                          ([1, 0], "dfhij, fhjk->dik")]
                ax1 = multi_tensor_contract(path_a, first_L, xstruct,
                                            a_oper_isite1, a_oper_isite1, first_R)
            else:
                # opt_einsum v3.2.1 is not bad, ~10% faster than the hand-design
                # contraction path for this complicated cases and consumes a little bit less memory
                # this is the only place in renormalizer we use opt_einsum now.
                # we keep it here just for a demo.
                # ax1 = oe.contract("abcd, befh, cfgi, hjkn, iklo, mnop, dglp -> aejm",
                #        first_L, a_oper_isite2, a_oper_isite2, a_oper_isite1,
                #        a_oper_isite1, first_R, xstruct)
                if USE_GPU:
                    oe_backend = "cupy"
                else:
                    oe_backend = "numpy"
                ax1 = expr(xstruct, backend=oe_backend)   
                #print(oe.contract_path("abcd, befh, cfgi, hjkn, iklo, mnop, dglp -> aejm",
                #        first_L, a_oper_isite2, a_oper_isite2, a_oper_isite1,
                #        a_oper_isite1, first_R, xstruct))

                #path_a = [([0, 1], "abcd, aefg->bcdefg"),
                #          ([5, 0], "bcdefg, behi->cdfghi"),
                #          ([4, 0], "cdfghi, ifjk->cdghjk"),
                #          ([3, 0], "cdghjk, chlm->dgjklm"),
                #          ([2, 0], "dgjklm, mjno->dgklno"),
                #          ([1, 0], "dgklno, gkop->dlnp")]
                #ax1 = multi_tensor_contract(path_a, first_L, xstruct,
                #                           a_oper_isite2, a_oper_isite1,
                #                           a_oper_isite2, a_oper_isite1,
                #                           first_R)
            ax = ax1 + xstruct * self.eta**2
            cout = ax[qnmat == constrain_qn]
            return asnumpy(cout)

        mat_a = scipy.sparse.linalg.LinearOperator((nonzeros, nonzeros),
                                                   matvec=hop)

        x, info = scipy.sparse.linalg.cg(mat_a, asnumpy(vec_b), tol=1.e-5,
                                         x0=asnumpy(guess),
                                         M=pre_M, atol=0)

        self.hop_time.append(count)
        if info != 0:
            logger.info(f"iteration solver not converged")
        # the value of the functional L
        l_value = xp.dot(asxp(hop(x)), asxp(x)) - 2 * xp.dot(vec_b, asxp(x))
        xstruct = cvec2cmat(xshape, x, qnmat, constrain_qn)
        self.cv_mps._update_mps(xstruct, cidx, qnbigl, qnbigr, self.m_max, percent)
        
        return float(l_value)
Esempio n. 6
0
    def optimize_cv(self, lr_group, isite, percent=0):
        if self.spectratype == "abs":
            # quantum number restriction, |1><0|
            up_exciton, down_exciton = 1, 0
        elif self.spectratype == "emi":
            # quantum number restriction, |0><1|
            up_exciton, down_exciton = 0, 1
        nexciton = 1
        first_LR, second_LR, third_LR, forth_LR = lr_group

        if self.method == "1site":
            add_list = [isite - 1]
            first_L = asxp(first_LR[isite - 1])
            first_R = asxp(first_LR[isite])
            second_L = asxp(second_LR[isite - 1])
            second_R = asxp(second_LR[isite])
            third_L = asxp(third_LR[isite - 1])
            third_R = asxp(third_LR[isite])
            forth_L = asxp(forth_LR[isite - 1])
            forth_R = asxp(forth_LR[isite])
        else:
            add_list = [isite - 2, isite - 1]
            first_L = asxp(first_LR[isite - 2])
            first_R = asxp(first_LR[isite])
            second_L = asxp(second_LR[isite - 2])
            second_R = asxp(second_LR[isite])
            third_L = asxp(third_LR[isite - 2])
            third_R = asxp(third_LR[isite])
            forth_L = asxp(forth_LR[isite - 2])
            forth_R = asxp(forth_LR[isite])

        xqnmat, xqnbigl, xqnbigr, xshape = \
            self.construct_X_qnmat(add_list)
        dag_qnmat, dag_qnbigl, dag_qnbigr = self.swap(xqnmat, xqnbigl, xqnbigr)
        nonzeros = int(
            np.sum(self.condition(dag_qnmat, [down_exciton, up_exciton])))

        if self.method == "1site":
            guess = moveaxis(self.cv_mpo[isite - 1], (1, 2), (2, 1))
        else:
            guess = tensordot(moveaxis(self.cv_mpo[isite - 2], (1, 2), (2, 1)),
                              moveaxis(self.cv_mpo[isite - 1]),
                              axes=(-1, 0))
        guess = guess[self.condition(dag_qnmat, [down_exciton, up_exciton])]

        if self.method == "1site":
            # define dot path
            path_1 = [([0, 1], "abcd, aefg -> bcdefg"),
                      ([3, 0], "bcdefg, bfhi -> cdeghi"),
                      ([2, 0], "cdeghi, chjk -> degijk"),
                      ([1, 0], "degijk, gikl -> dejl")]
            path_2 = [([0, 1], "abcd, aefg -> bcdefg"),
                      ([3, 0], "bcdefg, bfhi -> cdeghi"),
                      ([2, 0], "cdeghi, djek -> cghijk"),
                      ([1, 0], "cghijk, gilk -> chjl")]
            path_3 = [([0, 1], "ab, acde -> bcde"), ([1,
                                                      0], "bcde, ef -> bcdf")]

            vecb = multi_tensor_contract(
                path_3, forth_L, moveaxis(self.b_mpo[isite - 1], (1, 2),
                                          (2, 1)),
                forth_R)[self.condition(dag_qnmat, [down_exciton, up_exciton])]

        a_oper_isite = asxp(self.a_oper[isite - 1])
        h_mpo_isite = asxp(self.h_mpo[isite - 1])
        # construct preconditioner
        Idt = xp.identity(h_mpo_isite.shape[1])
        M1_1 = xp.einsum('abca->abc', first_L)
        path_m1 = [([0, 1], "abc, bdef->acdef"), ([1,
                                                   0], "acdef, cegh->adfgh")]
        M1_2 = multi_tensor_contract(path_m1, M1_1, a_oper_isite, a_oper_isite)
        M1_2 = xp.einsum("abcbd->abcd", M1_2)
        M1_3 = xp.einsum('ecde->ecd', first_R)
        M1_4 = xp.einsum('ff->f', Idt)
        path_m1 = [([0, 1], "abcd,ecd->abe"), ([1, 0], "abe,f->abef")]
        pre_M1 = multi_tensor_contract(path_m1, M1_2, M1_3, M1_4)
        pre_M1 = xp.moveaxis(pre_M1, [-2, -1], [-1, -2])[self.condition(
            dag_qnmat, [down_exciton, up_exciton])]

        M2_1 = xp.einsum('aeag->aeg', second_L)
        M2_2 = xp.einsum('eccf->ecf', a_oper_isite)
        M2_3 = xp.einsum('gbbh->gbh', h_mpo_isite)
        M2_4 = xp.einsum('dfdh->dfh', second_R)
        path_m2 = [([0, 1], "aeg,gbh->aebh"), ([2, 0], "aebh,ecf->abchf"),
                   ([1, 0], "abhcf,dfh->abcd")]
        pre_M2 = multi_tensor_contract(path_m2, M2_1, M2_3, M2_2, M2_4)
        pre_M2 = pre_M2[self.condition(dag_qnmat, [down_exciton, up_exciton])]

        M4_1 = xp.einsum('faah->fah', third_L)
        M4_4 = xp.einsum('gddi->gdi', third_R)
        M4_5 = xp.einsum('cc->c', Idt)
        M4_path = [([0, 1], "fah,febg->ahebg"), ([2, 0], "ahebg,hjei->abgji"),
                   ([1, 0], "abgji,gdi->abjd")]
        pre_M4 = multi_tensor_contract(M4_path, M4_1, h_mpo_isite, h_mpo_isite,
                                       M4_4)
        pre_M4 = xp.einsum('abbd->abd', pre_M4)
        pre_M4 = xp.tensordot(pre_M4, M4_5, axes=0)
        pre_M4 = xp.moveaxis(pre_M4, [2, 3], [3, 2])[self.condition(
            dag_qnmat, [down_exciton, up_exciton])]

        M_x = lambda x: asnumpy(
            asxp(x) /
            (pre_M1 + 2 * pre_M2 + pre_M4 + xp.ones(nonzeros) * self.eta**2))
        pre_M = scipy.sparse.linalg.LinearOperator((nonzeros, nonzeros), M_x)

        count = 0

        def hop(x):
            nonlocal count
            count += 1
            dag_struct = asxp(self.dag2mat(xshape, x, dag_qnmat))
            if self.method == "1site":

                M1 = multi_tensor_contract(path_1, first_L, dag_struct,
                                           a_oper_isite, a_oper_isite, first_R)
                M2 = multi_tensor_contract(path_2, second_L, dag_struct,
                                           a_oper_isite, h_mpo_isite, second_R)
                M2 = xp.moveaxis(M2, (1, 2), (2, 1))
                M3 = multi_tensor_contract(path_2, third_L, h_mpo_isite,
                                           dag_struct, h_mpo_isite, third_R)
                M3 = xp.moveaxis(M3, (1, 2), (2, 1))
                cout = M1 + 2 * M2 + M3 + dag_struct * self.eta**2
            cout = cout[self.condition(dag_qnmat, [down_exciton, up_exciton])]
            return asnumpy(cout)

        # Matrix A
        mat_a = scipy.sparse.linalg.LinearOperator((nonzeros, nonzeros),
                                                   matvec=hop)

        x, info = scipy.sparse.linalg.cg(mat_a,
                                         asnumpy(vecb),
                                         tol=1.e-5,
                                         x0=asnumpy(guess),
                                         maxiter=500,
                                         M=pre_M,
                                         atol=0)
        # logger.info(f"linear eq dim: {nonzeros}")
        # logger.info(f'times for hop:{count}')
        self.hop_time.append(count)
        if info != 0:
            logger.warning(
                f"cg not converged, vecb.norm:{xp.linalg.norm(vecb)}")
        l_value = xp.dot(asxp(hop(x)), asxp(x)) - 2 * xp.dot(vecb, asxp(x))

        x = self.dag2mat(xshape, x, dag_qnmat)
        if self.method == "1site":
            x = np.moveaxis(x, [1, 2], [2, 1])
        x, xdim, xqn, compx = self.x_svd(x,
                                         xqnbigl,
                                         xqnbigr,
                                         nexciton,
                                         percent=percent)

        if self.method == "1site":
            self.cv_mpo[isite - 1] = x
            if not self.cv_mpo.to_right:
                if isite != 1:
                    self.cv_mpo[isite - 2] = \
                        tensordot(self.cv_mpo[isite - 2], compx, axes=(-1, 0))
                    self.cv_mpo.qn[isite - 1] = xqn
                    self.cv_mpo.qnidx = isite - 2
                else:
                    self.cv_mpo[isite - 1] = \
                        tensordot(compx, self.cv_mpo[isite - 1], axes=(-1, 0))
                    self.cv_mpo.qnidx = 0
            else:
                if isite != len(self.cv_mpo):
                    self.cv_mpo[isite] = \
                        tensordot(compx, self.cv_mpo[isite], axes=(-1, 0))
                    self.cv_mpo.qn[isite] = xqn
                    self.cv_mpo.qnidx = isite
                else:
                    self.cv_mpo[isite - 1] = \
                        tensordot(self.cv_mpo[isite - 1], compx, axes=(-1, 0))
                    self.cv_mpo.qnidx = self.cv_mpo.site_num - 1

        else:
            if not self.cv_mpo.to_right:
                self.cv_mpo[isite - 2] = compx
                self.cv_mpo[isite - 1] = x
                self.cv_mpo.qnidx = isite - 2
            else:
                self.cv_mpo[isite - 2] = x
                self.cv_mpo[isite - 1] = compx
                self.cv_mpo.qnidx = isite - 1
            self.cv_mpo.qn[isite - 1] = xqn

        return float(l_value)