def test_harmonic_oscillators():
    nc_filename = tempfile.mkdtemp() + "/out.nc"

    T_min = 1.0 * unit.kelvin
    T_i = [T_min, T_min * 10., T_min * 100.]
    n_replicas = len(T_i)

    ho = testsystems.HarmonicOscillator()

    system = ho.system
    positions = ho.positions

    states = [ ThermodynamicState(system=system, temperature=T_i[i]) for i in range(n_replicas) ]

    coordinates = [positions] * n_replicas

    mpicomm = dummympi.DummyMPIComm()
    parameters = {"number_of_iterations":1000}
    replica_exchange = ReplicaExchange.create(states, coordinates, nc_filename, mpicomm=mpicomm, parameters=parameters)
    replica_exchange.run()

    u_permuted = replica_exchange.database.ncfile.variables["energies"][:]
    s = replica_exchange.database.ncfile.variables["states"][:]

    u = permute_energies(u_permuted, s)

    u0 = np.array([[ho.reduced_potential_expectation(s0, s1) for s1 in states] for s0 in states])

    l0 = np.log(u0)  # Compare on log scale because uncertainties are proportional to values
    l1 = np.log(u.mean(0))
    eq(l0, l1, decimal=1)
def test_parallel_tempering():
    nc_filename = tempfile.mkdtemp() + "/out.nc"

    T_min = 1.0 * unit.kelvin
    T_max = 10.0 * unit.kelvin
    n_temps = 3

    ho = testsystems.HarmonicOscillator()

    system = ho.system
    positions = ho.positions


    coordinates = [positions] * n_temps

    mpicomm = dummympi.DummyMPIComm()
    parameters = {"number_of_iterations":1000}
    replica_exchange = ParallelTempering.create(system, coordinates, nc_filename, T_min=T_min, T_max=T_max, n_temps=n_temps, mpicomm=mpicomm, parameters=parameters)
    
    eq(replica_exchange.n_replicas, n_temps)

    replica_exchange.run()

    u_permuted = replica_exchange.database.ncfile.variables["energies"][:]
    s = replica_exchange.database.ncfile.variables["states"][:]

    u = permute_energies(u_permuted, s)

    states = replica_exchange.thermodynamic_states
    u0 = np.array([[ho.reduced_potential_expectation(s0, s1) for s1 in states] for s0 in states])

    l0 = np.log(u0)  # Compare on log scale because uncertainties are proportional to values
    l1 = np.log(u.mean(0))
    eq(l0, l1, decimal=1)
def test_power_oscillators(mpicomm):

    nc_filename = tempfile.mkdtemp() + "/out.nc"

    temperature = 1 * unit.kelvin

    K0 = 100.0  # Units are automatically added by the testsystem
    K = [K0, K0 * 10., K0 * 1.]
    powers = [2., 2., 4.]
    n_replicas = len(K)

    oscillators = [testsystems.PowerOscillator(b=powers[i]) for i in range(n_replicas)]

    systems = [ho.system for ho in oscillators]
    positions = [ho.positions for ho in oscillators]

    state = ThermodynamicState(system=systems[0], temperature=temperature)

    parameters = {"number_of_iterations":2000}
    replica_exchange = hamiltonian_exchange.HamiltonianExchange.create(state, systems, positions, nc_filename, mpicomm=mpicomm, parameters=parameters)
    replica_exchange.run()

    u_permuted = replica_exchange.database.ncfile.variables["energies"][:]
    s = replica_exchange.database.ncfile.variables["states"][:]
    u = permute_energies(u_permuted, s)

    beta = (state.temperature * kB) ** -1.
    u0 = np.array([[testsystems.PowerOscillator.reduced_potential(beta, ho2.K, ho2.b, ho.K, ho.b) for ho in oscillators] for ho2 in oscillators])

    l = np.log(u.mean(0))
    l0 = np.log(u0)

    eq(l0, l, decimal=1)
def test_power_oscillators():

    nc_filename = tempfile.mkdtemp() + "/out.nc"

    temperature = 1 * unit.kelvin

    powers = [2., 2., 4.]
    n_replicas = len(powers)

    oscillators = [testsystems.PowerOscillator(b=powers[i]) for i in range(n_replicas)]

    systems = [ho.system for ho in oscillators]
    positions = [ho.positions for ho in oscillators]

    state = ThermodynamicState(system=systems[0], temperature=temperature)

    mpicomm = dummympi.DummyMPIComm()
    
    parameters = {"number_of_iterations":2000}
    replica_exchange = hamiltonian_exchange.HamiltonianExchange.create(state, systems, positions, nc_filename, mpicomm=mpicomm, parameters=parameters)
    replica_exchange.run()

    u_permuted = replica_exchange.database.ncfile.variables["energies"][:]
    s = replica_exchange.database.ncfile.variables["states"][:]
    u = permute_energies(u_permuted, s)

    beta = (state.temperature * kB) ** -1.
    u0 = np.array([[testsystems.PowerOscillator.reduced_potential(beta, ho2.K, ho2.b, ho.K, ho.b) for ho in oscillators] for ho2 in oscillators])

    l = np.log(u.mean(0))
    l0 = np.log(u0)

    eq(l0, l, decimal=1)
Esempio n. 5
0
def test_parallel_tempering():
    nc_filename = tempfile.mkdtemp() + "/out.nc"

    T_min = 1.0 * unit.kelvin
    T_max = 10.0 * unit.kelvin
    n_temps = 3

    ho = testsystems.HarmonicOscillator()

    system = ho.system
    positions = ho.positions

    coordinates = [positions] * n_temps

    mpicomm = dummympi.DummyMPIComm()
    parameters = {"number_of_iterations": 1000}
    replica_exchange = ParallelTempering.create(system,
                                                coordinates,
                                                nc_filename,
                                                T_min=T_min,
                                                T_max=T_max,
                                                n_temps=n_temps,
                                                mpicomm=mpicomm,
                                                parameters=parameters)

    eq(replica_exchange.n_replicas, n_temps)

    replica_exchange.run()

    u_permuted = replica_exchange.database.ncfile.variables["energies"][:]
    s = replica_exchange.database.ncfile.variables["states"][:]

    u = permute_energies(u_permuted, s)

    states = replica_exchange.thermodynamic_states
    u0 = np.array([[ho.reduced_potential_expectation(s0, s1) for s1 in states]
                   for s0 in states])

    l0 = np.log(
        u0
    )  # Compare on log scale because uncertainties are proportional to values
    l1 = np.log(u.mean(0))
    eq(l0, l1, decimal=1)
def test_harmonic_oscillators():
    nc_filename = tempfile.mkdtemp() + "/out.nc"

    T_min = 1.0 * unit.kelvin
    T_i = [T_min, T_min * 10., T_min * 100.]
    n_replicas = len(T_i)

    ho = testsystems.HarmonicOscillator()

    system = ho.system
    positions = ho.positions

    states = [
        ThermodynamicState(system=system, temperature=T_i[i])
        for i in range(n_replicas)
    ]

    coordinates = [positions] * n_replicas

    mpicomm = dummympi.DummyMPIComm()
    parameters = {"number_of_iterations": 1000}
    replica_exchange = ReplicaExchange.create(states,
                                              coordinates,
                                              nc_filename,
                                              mpicomm=mpicomm,
                                              parameters=parameters)
    replica_exchange.run()

    u_permuted = replica_exchange.database.ncfile.variables["energies"][:]
    s = replica_exchange.database.ncfile.variables["states"][:]

    u = permute_energies(u_permuted, s)

    u0 = np.array([[ho.reduced_potential_expectation(s0, s1) for s1 in states]
                   for s0 in states])

    l0 = np.log(
        u0
    )  # Compare on log scale because uncertainties are proportional to values
    l1 = np.log(u.mean(0))
    eq(l0, l1, decimal=1)