Esempio n. 1
0
class DeterministicRunner(DynamicModel):

    def __init__(self, configuration, modelTime, initialState = None):
        DynamicModel.__init__(self)

        self.modelTime = modelTime        
        self.model = PCRGlobWB(configuration, modelTime, initialState)
        self.reporting = Reporting(configuration, self.model, modelTime)
        
    def initial(self): 
        pass

    def dynamic(self):

        # re-calculate current model time using current pcraster timestep value
        self.modelTime.update(self.currentTimeStep())

        # update model (will pick up current model time from model time object)
        
        self.model.read_forcings()
        self.model.update(report_water_balance=True)
        

        #do any needed reporting for this time step        
        self.reporting.report()
Esempio n. 2
0
class DeterministicRunner(DynamicModel):

    def __init__(self, configuration, modelTime, initialState = None):
        DynamicModel.__init__(self)

        self.modelTime = modelTime        
        self.model = PCRGlobWB(configuration, modelTime, initialState)
        self.reporting = Reporting(configuration, self.model, modelTime)
        
    def initial(self): 
        pass

    def dynamic(self):

        # re-calculate current model time using current pcraster timestep value
        self.modelTime.update(self.currentTimeStep())

        self.model.read_forcings()
        self.model.update(report_water_balance=True)

        # get observation data
        sattelite_satDegUpp000005 = self.get_satDegUpp000005_from_observation()
        
        # set upper soil moisture state based on observation data
        self.set_satDegUpp000005(sattelite_satDegUpp000005)                            

        # do any needed reporting for this time step        
        self.reporting.report()

    def get_satDegUpp000005_from_observation(self):

        # assumption for observation values
        # - this should be replaced by values from the ECV soil moisture value (sattelite data)
        # - uncertainty should be included here
        # - note that the value should be between 0.0 and 1.0
        observed_satDegUpp000005 = pcr.min(1.0,\
                                   pcr.max(0.0,\
                                   pcr.normal(pcr.boolean(1)) + 1.0))
        return observed_satDegUpp000005                           

    def set_satDegUpp000005(self, observed_satDegUpp000005):

        # ratio between observation and model
        ratio_between_observation_and_model = pcr.ifthenelse(self.model.landSurface.satDegUpp000005> 0.0, 
                                                             observed_satDegUpp000005 / \
                                                             self.model.landSurface.satDegUpp000005, 0.0) 
        
        # updating upper soil states for all lad cover types
        for coverType in self.model.landSurface.coverTypes:
            
            # correcting upper soil state (storUpp000005)
            self.model.landSurface.landCoverObj[coverType].storUpp000005 *= ratio_between_observation_and_model
            
            # if model value = 0.0, storUpp000005 is calculated based on storage capacity (model parameter) and observed saturation degree   
            self.model.landSurface.landCoverObj[coverType].storUpp000005  = pcr.ifthenelse(self.model.landSurface.satDegUpp000005 > 0.0,\
                                                                                           self.model.landSurface.landCoverObj[coverType].storUpp000005,\
                                                                                           observed_satDegUpp000005 * self.model.landSurface.parameters.storCapUpp000005) 
class DeterministicRunner(DynamicModel):
    def __init__(self, configuration, modelTime):
        DynamicModel.__init__(self)

        self.modelTime = modelTime
        self.model = ModflowOfflineCoupling(configuration, modelTime)

        self.reporting = Reporting(configuration, self.model, modelTime)

    def initial(self):

        # get or prepare the initial condition for groundwater head
        self.model.get_initial_heads()

    def dynamic(self):

        # re-calculate current model time using current pcraster timestep value
        self.modelTime.update(self.currentTimeStep())

        # update model (It will pick up current model time from the modelTime object)
        self.model.update()

        # do any needed reporting for this time step
        self.reporting.report()
class DeterministicRunner(DynamicModel):
    def __init__(self,
                 configuration,
                 modelTime,
                 initialState=None,
                 system_argument=None):
        DynamicModel.__init__(self)

        self.modelTime = modelTime
        self.model = PCRGlobWB(configuration, modelTime, initialState)
        self.reporting = Reporting(configuration, self.model, modelTime)

        # the model will set paramaters based on global pre-multipliers given in the argument:
        if system_argument != None:
            self.adusting_parameters(configuration, system_argument)

        # option to include merging processes for pcraster maps and netcdf files:
        self.with_merging = True
        if ('with_merging' in configuration.globalOptions.keys()) and (
                configuration.globalOptions['with_merging'] == "False"):
            self.with_merging = False

        # make the configuration available for the other method/function
        self.configuration = configuration

    def adusting_parameters(self, configuration, system_argument):

        # global pre-multipliers given in the argument:
        if len(system_argument) > 4:

            logger.info(
                "Adjusting some model parameters based on given values in the system argument."
            )

            # pre-multipliers for minSoilDepthFrac, kSat, recessionCoeff, storCap and degreeDayFactor
            multiplier_for_minSoilDepthFrac = float(
                system_argument[4]
            )  # linear scale                                        # Note that this one does NOT work for the changing WMIN or Joyce land cover options.
            multiplier_for_kSat = float(system_argument[5])  # log scale
            multiplier_for_recessionCoeff = float(
                system_argument[6])  # log scale
            multiplier_for_storCap = float(system_argument[7])  # linear scale
            multiplier_for_degreeDayFactor = float(
                system_argument[8])  # linear scale

            # pre-multiplier for the reference potential ET
            self.multiplier_for_refPotET = float(
                system_argument[9])  # linear scale

        # it is also possible to define prefactors via the ini/configuration file:
        # - this will be overwrite any previous given pre-multipliers
        if 'prefactorOptions' in configuration.allSections:

            logger.info(
                "Adjusting some model parameters based on given values in the ini/configuration file."
            )

            self.multiplier_for_refPotET = float(
                configuration.
                prefactorOptions['linear_multiplier_for_refPotET']
            )  # linear scale  # Note that this one does NOT work for the changing WMIN or Joyce land cover options.
            multiplier_for_degreeDayFactor = float(
                configuration.prefactorOptions[
                    'linear_multiplier_for_degreeDayFactor'])  # linear scale
            multiplier_for_minSoilDepthFrac = float(
                configuration.prefactorOptions[
                    'linear_multiplier_for_minSoilDepthFrac'])  # linear scale
            multiplier_for_kSat = float(
                configuration.prefactorOptions['log_10_multiplier_for_kSat']
            )  # log scale
            multiplier_for_storCap = float(
                configuration.prefactorOptions['linear_multiplier_for_storCap']
            )  # linear scale
            multiplier_for_recessionCoeff = float(
                configuration.prefactorOptions[
                    'log_10_multiplier_for_recessionCoeff'])  # log scale

        # saving global pre-multipliers to the log file:
        msg = "\n"
        msg += "\n"
        msg += "Multiplier values used: " + "\n"
        msg += "For minSoilDepthFrac           : " + str(
            multiplier_for_minSoilDepthFrac) + "\n"
        msg += "For kSat (log-scale)           : " + str(
            multiplier_for_kSat) + "\n"
        msg += "For recessionCoeff (log-scale) : " + str(
            multiplier_for_recessionCoeff) + "\n"
        msg += "For storCap                    : " + str(
            multiplier_for_storCap) + "\n"
        msg += "For degreeDayFactor            : " + str(
            multiplier_for_degreeDayFactor) + "\n"
        msg += "For refPotET                   : " + str(
            self.multiplier_for_refPotET) + "\n"
        logger.info(msg)
        # - also to a txt file
        f = open(
            "multiplier.txt", "w"
        )  # this will be stored in the "map" folder of the 'outputDir' (as we set the current working directory to this "map" folder, see configuration.py)
        f.write(msg)
        f.close()

        # set parameter "recessionCoeff" based on the given pre-multiplier
        # - also saving the adjusted parameter maps to pcraster files
        # - these will be stored in the "map" folder of the 'outputDir' (as we set the current working directory to this "map" folder, see configuration.py)
        # "recessionCoeff"
        # minimum value is zero and using log-scale
        self.model.groundwater.recessionCoeff = pcr.max(
            0.0, (10**(multiplier_for_recessionCoeff)) *
            self.model.groundwater.recessionCoeff)
        self.model.groundwater.recessionCoeff = pcr.min(
            1.0, self.model.groundwater.recessionCoeff)
        # report the map
        pcr.report(self.model.groundwater.recessionCoeff, "recessionCoeff.map")

        # set parameters "kSat", "storCap", "minSoilDepthFrac", and "degreeDayFactor" based on the given pre-multipliers
        for coverType in self.model.landSurface.coverTypes:

            # "degreeDayFactor"
            self.model.landSurface.landCoverObj[coverType].degreeDayFactor  = pcr.max(0.0, multiplier_for_degreeDayFactor  *\
                                                           self.model.landSurface.landCoverObj[coverType].degreeDayFactor)
            # report the map
            pcraster_filename = "degreeDayFactor" + "_" + coverType + ".map"
            pcr.report(
                self.model.landSurface.landCoverObj[coverType].degreeDayFactor,
                pcraster_filename)

            # "kSat" and "storCap" for 2 layer model
            if self.model.landSurface.numberOfSoilLayers == 2:

                # "kSat"
                # minimum value is zero and using-log-scale
                self.model.landSurface.landCoverObj[coverType].parameters.kSatUpp = \
                       pcr.max(0.0, (10**(multiplier_for_kSat)) * self.model.landSurface.landCoverObj[coverType].parameters.kSatUpp)
                self.model.landSurface.landCoverObj[coverType].parameters.kSatLow = \
                       pcr.max(0.0, (10**(multiplier_for_kSat)) * self.model.landSurface.landCoverObj[coverType].parameters.kSatLow)
                # report the maps
                pcraster_filename = "kSatUpp" + "_" + coverType + ".map"
                pcr.report(
                    self.model.landSurface.landCoverObj[coverType].parameters.
                    kSatUpp, pcraster_filename)
                pcraster_filename = "kSatLow" + "_" + coverType + ".map"
                pcr.report(
                    self.model.landSurface.landCoverObj[coverType].parameters.
                    kSatLow, pcraster_filename)

                # "storCap"
                # minimum value is zero
                self.model.landSurface.landCoverObj[coverType].parameters.storCapUpp = pcr.max(0.0, multiplier_for_storCap*\
                                                                                                    self.model.landSurface.landCoverObj[coverType].parameters.storCapUpp)
                self.model.landSurface.landCoverObj[coverType].parameters.storCapLow = pcr.max(0.0, multiplier_for_storCap*\
                                                                                                    self.model.landSurface.landCoverObj[coverType].parameters.storCapLow)
                # report the maps
                pcraster_filename = "storCapUpp" + "_" + coverType + ".map"
                pcr.report(
                    self.model.landSurface.landCoverObj[coverType].parameters.
                    storCapUpp, pcraster_filename)
                pcraster_filename = "storCapLow" + "_" + coverType + ".map"
                pcr.report(
                    self.model.landSurface.landCoverObj[coverType].parameters.
                    storCapLow, pcraster_filename)

            # "kSat" and "storCap" for 3 layer model
            if self.model.landSurface.numberOfSoilLayers == 3:

                # "kSat"
                # minimum value is zero and using-log-scale
                self.model.landSurface.landCoverObj[coverType].parameters.kSatUpp000005 = \
                       pcr.max(0.0, (10**(multiplier_for_kSat)) * self.model.landSurface.landCoverObj[coverType].parameters.kSatUpp000005)
                self.model.landSurface.landCoverObj[coverType].parameters.kSatUpp005030 = \
                       pcr.max(0.0, (10**(multiplier_for_kSat)) * self.model.landSurface.landCoverObj[coverType].parameters.kSatUpp005030)
                self.model.landSurface.landCoverObj[coverType].parameters.kSatLow030150 = \
                       pcr.max(0.0, (10**(multiplier_for_kSat)) * self.model.landSurface.landCoverObj[coverType].parameters.kSatLow030150)
                # report the maps
                pcraster_filename = "kSatUpp000005" + "_" + coverType + ".map"
                pcr.report(
                    self.model.landSurface.landCoverObj[coverType].parameters.
                    kSatUpp000005, pcraster_filename)
                pcraster_filename = "kSatUpp005030" + "_" + coverType + ".map"
                pcr.report(
                    self.model.landSurface.landCoverObj[coverType].parameters.
                    kSatUpp005030, pcraster_filename)
                pcraster_filename = "kSatLow030150" + "_" + coverType + ".map"
                pcr.report(
                    self.model.landSurface.landCoverObj[coverType].parameters.
                    kSatLow030150, pcraster_filename)

                # "storCap"
                # minimum value is zero
                self.model.landSurface.landCoverObj[coverType].parameters.storCapUpp000005 = pcr.max(0.0, multiplier_for_storCap*\
                                                                                                          self.model.landSurface.landCoverObj[coverType].parameters.storCapUpp000005)
                self.model.landSurface.landCoverObj[coverType].parameters.storCapUpp005030 = pcr.max(0.0, multiplier_for_storCap*\
                                                                                                          self.model.landSurface.landCoverObj[coverType].parameters.storCapUpp005030)
                self.model.landSurface.landCoverObj[coverType].parameters.storCapLow030150 = pcr.max(0.0, multiplier_for_storCap*\
                                                                                                          self.model.landSurface.landCoverObj[coverType].parameters.storCapLow030150)
                # report the maps
                pcraster_filename = "storCapUpp000005" + "_" + coverType + ".map"
                pcr.report(
                    self.model.landSurface.landCoverObj[coverType].parameters.
                    storCapUpp000005, pcraster_filename)
                pcraster_filename = "storCapUpp005030" + "_" + coverType + ".map"
                pcr.report(
                    self.model.landSurface.landCoverObj[coverType].parameters.
                    storCapUpp005030, pcraster_filename)
                pcraster_filename = "storCapLow030150" + "_" + coverType + ".map"
                pcr.report(
                    self.model.landSurface.landCoverObj[coverType].parameters.
                    storCapLow030150, pcraster_filename)

# re-calculate rootZoneWaterStorageCap as the consequence of the modification of "storCap"
# This is WMAX in the oldcalc script.
            if self.model.landSurface.numberOfSoilLayers == 2:
                self.model.landSurface.landCoverObj[coverType].parameters.rootZoneWaterStorageCap = self.model.landSurface.landCoverObj[coverType].parameters.storCapUpp +\
                                                                                                    self.model.landSurface.landCoverObj[coverType].parameters.storCapLow
            if self.model.landSurface.numberOfSoilLayers == 3:
                self.model.landSurface.landCoverObj[coverType].parameters.rootZoneWaterStorageCap = self.model.landSurface.landCoverObj[coverType].parameters.storCapUpp000005 +\
                                                                                                    self.model.landSurface.landCoverObj[coverType].parameters.storCapUpp005030 +\
                         self.model.landSurface.landCoverObj[coverType].parameters.storCapLow030150

# report the map
            pcraster_filename = "rootZoneWaterStorageCap" + "_" + coverType + ".map"
            pcr.report(
                self.model.landSurface.landCoverObj[coverType].parameters.
                rootZoneWaterStorageCap, pcraster_filename)

            # "minSoilDepthFrac"
            if multiplier_for_minSoilDepthFrac != 1.0:

                # minimum value is zero
                self.model.landSurface.landCoverObj[coverType].minSoilDepthFrac = pcr.max(0.0, multiplier_for_minSoilDepthFrac*\
                                                               self.model.landSurface.landCoverObj[coverType].minSoilDepthFrac)
                # for minSoilDepthFrac - values will be limited by maxSoilDepthFrac
                self.model.landSurface.landCoverObj[coverType].minSoilDepthFrac = pcr.min(\
                                                               self.model.landSurface.landCoverObj[coverType].minSoilDepthFrac,\
                                                               self.model.landSurface.landCoverObj[coverType].maxSoilDepthFrac)
                # maximum value is 1.0
                self.model.landSurface.landCoverObj[
                    coverType].minSoilDepthFrac = pcr.min(
                        1.0, self.model.landSurface.landCoverObj[coverType].
                        minSoilDepthFrac)
                # report the map
                pcraster_filename = "minSoilDepthFrac" + "_" + coverType + ".map"
                pcr.report(
                    self.model.landSurface.landCoverObj[coverType].
                    minSoilDepthFrac, pcraster_filename)

                # re-calculate arnoBeta (as the consequence of the modification of minSoilDepthFrac)
                self.model.landSurface.landCoverObj[coverType].arnoBeta = pcr.max(0.001,\
                     (self.model.landSurface.landCoverObj[coverType].maxSoilDepthFrac-1.)/(1.-self.model.landSurface.landCoverObj[coverType].minSoilDepthFrac)+\
                                               self.model.landSurface.landCoverObj[coverType].parameters.orographyBeta-0.01)
                self.model.landSurface.landCoverObj[coverType].arnoBeta = pcr.cover(pcr.max(0.001,\
                      self.model.landSurface.landCoverObj[coverType].arnoBeta), 0.001)
                # report the map
                pcraster_filename = "arnoBeta" + "_" + coverType + ".map"
                pcr.report(
                    self.model.landSurface.landCoverObj[coverType].arnoBeta,
                    pcraster_filename)

                # re-calculate rootZoneWaterStorageMin (as the consequence of the modification of minSoilDepthFrac)
                # This is WMIN in the oldcalc script.
                # WMIN (unit: m): minimum local soil water capacity within the grid-cell
                self.model.landSurface.landCoverObj[coverType].rootZoneWaterStorageMin = self.model.landSurface.landCoverObj[coverType].minSoilDepthFrac *\
                                                                                         self.model.landSurface.landCoverObj[coverType].parameters.rootZoneWaterStorageCap
                # report the map
                pcraster_filename = "rootZoneWaterStorageMin" + "_" + coverType + ".map"
                pcr.report(
                    self.model.landSurface.landCoverObj[coverType].
                    rootZoneWaterStorageMin, pcraster_filename)

                # re-calculate rootZoneWaterStorageRange (as the consequence of the modification of rootZoneWaterStorageRange and minSoilDepthFrac)
                # WMAX - WMIN (unit: m)
                self.model.landSurface.landCoverObj[coverType].rootZoneWaterStorageRange = self.model.landSurface.landCoverObj[coverType].parameters.rootZoneWaterStorageCap -\
                                                                                           self.model.landSurface.landCoverObj[coverType].rootZoneWaterStorageMin
                # report the map
                pcraster_filename = "rootZoneWaterStorageRange" + "_" + coverType + ".map"
                pcr.report(
                    self.model.landSurface.landCoverObj[coverType].
                    rootZoneWaterStorageRange, pcraster_filename)

    def initial(self):
        pass

    def dynamic(self):

        # re-calculate current model time using current pcraster timestep value
        self.modelTime.update(self.currentTimeStep())

        # read model forcing (will pick up current model time from model time object)
        self.model.read_forcings()

        # adjust the reference potential ET according to the given pre-multiplier
        self.model.meteo.referencePotET = self.model.meteo.referencePotET * self.multiplier_for_refPotET

        # update model (will pick up current model time from model time object)
        # - for a run coupled to MODFLOW, water balance checks are not valid due to lateral flow.
        if self.configuration.online_coupling_between_pcrglobwb_and_modflow:
            self.model.update(report_water_balance=False)
        else:
            self.model.update(report_water_balance=True)

        # do any needed reporting for this time step
        self.reporting.report()

        # at the last day of the month, stop calculation until modflow and related merging process are ready (only for a run with modflow)
        if self.modelTime.isLastDayOfMonth() and (self.configuration.online_coupling_between_pcrglobwb_and_modflow or\
                                                  self.with_merging):

            # wait until modflow files are ready
            if self.configuration.online_coupling_between_pcrglobwb_and_modflow:
                modflow_is_ready = False
                self.count_check = 0
                while modflow_is_ready == False:
                    if datetime.datetime.now().second == 14 or\
                       datetime.datetime.now().second == 29 or\
                       datetime.datetime.now().second == 34 or\
                       datetime.datetime.now().second == 59:                        \
                                               modflow_is_ready = self.check_modflow_status()

            # wait until merged files are ready
            merged_files_are_ready = False
            while merged_files_are_ready == False:
                self.count_check = 0
                if datetime.datetime.now().second == 14 or\
                   datetime.datetime.now().second == 29 or\
                   datetime.datetime.now().second == 34 or\
                   datetime.datetime.now().second == 59:                    \
                                       merged_files_are_ready = self.check_merging_status()

    def check_modflow_status(self):

        status_file = str(
            self.configuration.main_output_directory
        ) + "/modflow/transient/maps/modflow_files_for_" + str(
            self.modelTime.fulldate) + "_are_ready.txt"
        msg = 'Waiting for the file: ' + status_file
        if self.count_check == 1: logger.info(msg)
        if self.count_check < 7:
            #~ logger.debug(msg)			# INACTIVATE THIS AS THIS MAKE A HUGE DEBUG (dbg) FILE
            self.count_check += 1
        status = os.path.exists(status_file)
        if status == False: return status
        if status: self.count_check = 0
        return status

    def check_merging_status(self):

        status_file = str(self.configuration.main_output_directory
                          ) + "/global/maps/merged_files_for_" + str(
                              self.modelTime.fulldate) + "_are_ready.txt"
        msg = 'Waiting for the file: ' + status_file
        if self.count_check == 1: logger.info(msg)
        if self.count_check < 7:
            #~ logger.debug(msg)			# INACTIVATE THIS AS THIS MAKE A HUGE DEBUG (dbg) FILE
            self.count_check += 1
        status = os.path.exists(status_file)
        if status == False: return status
        if status: self.count_check = 0
        return status
Esempio n. 5
0
class DeterministicRunner(DynamicModel):
    def __init__(self,
                 configuration,
                 modelTime,
                 initialState=None,
                 system_argument=None):
        DynamicModel.__init__(self)

        self.modelTime = modelTime
        self.model = PCRGlobWB(configuration, modelTime, initialState)
        self.reporting = Reporting(configuration, self.model, modelTime)

        # the model will set paramaters based on global pre-multipliers given in the argument:
        self.adusting_parameters(configuration, system_argument)

        # make the configuration available for the other method/function
        self.configuration = configuration

    def adusting_parameters(self, configuration, system_argument):

        # it is also possible to define prefactors via the ini/configuration file:
        # - this will be overwrite any previous given pre-multipliers
        if 'prefactorOptions' in configuration.allSections:

            logger.info(
                "Adjusting some model parameters based on given values in the ini/configuration file."
            )

            self.multiplier_for_refPotET = float(
                configuration.
                prefactorOptions['linear_multiplier_for_refPotET']
            )  # linear scale  # Note that this one does NOT work for the changing WMIN or Joyce land cover options.
            multiplier_for_degreeDayFactor = float(
                configuration.prefactorOptions[
                    'linear_multiplier_for_degreeDayFactor'])  # linear scale
            multiplier_for_minSoilDepthFrac = float(
                configuration.prefactorOptions[
                    'linear_multiplier_for_minSoilDepthFrac'])  # linear scale
            multiplier_for_kSat = float(
                configuration.prefactorOptions['log_10_multiplier_for_kSat']
            )  # log scale
            multiplier_for_storCap = float(
                configuration.prefactorOptions['linear_multiplier_for_storCap']
            )  # linear scale
            multiplier_for_recessionCoeff = float(
                configuration.prefactorOptions[
                    'log_10_multiplier_for_recessionCoeff'])  # log scale

        # saving global pre-multipliers to the log file:
        msg = "\n"
        msg += "\n"
        msg += "Multiplier values used: " + "\n"
        msg += "For minSoilDepthFrac           : " + str(
            multiplier_for_minSoilDepthFrac) + "\n"
        msg += "For kSat (log-scale)           : " + str(
            multiplier_for_kSat) + "\n"
        msg += "For recessionCoeff (log-scale) : " + str(
            multiplier_for_recessionCoeff) + "\n"
        msg += "For storCap                    : " + str(
            multiplier_for_storCap) + "\n"
        msg += "For degreeDayFactor            : " + str(
            multiplier_for_degreeDayFactor) + "\n"
        msg += "For refPotET                   : " + str(
            self.multiplier_for_refPotET) + "\n"
        logger.info(msg)
        # - also to a txt file
        f = open(
            "multiplier.txt", "w"
        )  # this will be stored in the "map" folder of the 'outputDir' (as we set the current working directory to this "map" folder, see configuration.py)
        f.write(msg)
        f.close()

        # set parameter "recessionCoeff" based on the given pre-multiplier
        # - also saving the adjusted parameter maps to pcraster files
        # - these will be stored in the "map" folder of the 'outputDir' (as we set the current working directory to this "map" folder, see configuration.py)
        # "recessionCoeff"
        # minimum value is zero and using log-scale
        self.model.groundwater.recessionCoeff = pcr.max(
            0.0, (10**(multiplier_for_recessionCoeff)) *
            self.model.groundwater.recessionCoeff)
        self.model.groundwater.recessionCoeff = pcr.min(
            1.0, self.model.groundwater.recessionCoeff)
        # report the map
        pcr.report(self.model.groundwater.recessionCoeff, "recessionCoeff.map")

        # set parameters "kSat", "storCap", "minSoilDepthFrac", and "degreeDayFactor" based on the given pre-multipliers
        for coverType in self.model.landSurface.coverTypes:

            # "degreeDayFactor"
            self.model.landSurface.landCoverObj[coverType].degreeDayFactor  = pcr.max(0.0, multiplier_for_degreeDayFactor  *\
                                                           self.model.landSurface.landCoverObj[coverType].degreeDayFactor)
            # report the map
            pcraster_filename = "degreeDayFactor" + "_" + coverType + ".map"
            pcr.report(
                self.model.landSurface.landCoverObj[coverType].degreeDayFactor,
                pcraster_filename)

        # "kSat" and "storCap" for 2 layer model
        if self.model.landSurface.numberOfSoilLayers == 2:

            # "kSat"
            # minimum value is zero and using-log-scale
            self.model.landSurface.parameters.kSatUpp = \
                   pcr.max(0.0, (10**(multiplier_for_kSat)) * self.model.landSurface.parameters.kSatUpp)
            self.model.landSurface.parameters.kSatLow = \
                   pcr.max(0.0, (10**(multiplier_for_kSat)) * self.model.landSurface.parameters.kSatLow)

            # report the maps (for debugging)
            #pcraster_filename = "kSatUpp"+ "_" + coverType + ".map"
            #pcr.report(self.model.landSurface.parameters.kSatUpp, pcraster_filename)
            #pcraster_filename = "kSatLow"+ "_" + coverType + ".map"
            #pcr.report(self.model.landSurface.parameters.kSatLow, pcraster_filename)

            # "storCap"
            # minimum value is zero
            self.model.landSurface.parameters.storCapUpp = pcr.max(0.0, multiplier_for_storCap*\
                                                                                                self.model.landSurface.parameters.storCapUpp)
            self.model.landSurface.parameters.storCapLow = pcr.max(0.0, multiplier_for_storCap*\
                                                                                                self.model.landSurface.parameters.storCapLow)
            # report the maps (for debugging)
            #pcraster_filename = "storCapUpp"+ "_" + coverType + ".map"
            #pcr.report(self.model.landSurface.parameters.storCapUpp, pcraster_filename)
            #pcraster_filename = "storCapLow"+ "_" + coverType + ".map"
            #pcr.report(self.model.landSurface.parameters.storCapLow, pcraster_filename)

        # "kSat" and "storCap" for 3 layer model
        if self.model.landSurface.numberOfSoilLayers == 3:

            # "kSat"
            # minimum value is zero and using-log-scale
            self.model.landSurface.landCoverObj[coverType].parameters.kSatUpp000005 = \
                   pcr.max(0.0, (10**(multiplier_for_kSat)) * self.model.landSurface.landCoverObj[coverType].parameters.kSatUpp000005)
            self.model.landSurface.landCoverObj[coverType].parameters.kSatUpp005030 = \
                   pcr.max(0.0, (10**(multiplier_for_kSat)) * self.model.landSurface.landCoverObj[coverType].parameters.kSatUpp005030)
            self.model.landSurface.landCoverObj[coverType].parameters.kSatLow030150 = \
                   pcr.max(0.0, (10**(multiplier_for_kSat)) * self.model.landSurface.landCoverObj[coverType].parameters.kSatLow030150)
            # report the maps
            pcraster_filename = "kSatUpp000005" + "_" + coverType + ".map"
            pcr.report(
                self.model.landSurface.landCoverObj[coverType].parameters.
                kSatUpp000005, pcraster_filename)
            pcraster_filename = "kSatUpp005030" + "_" + coverType + ".map"
            pcr.report(
                self.model.landSurface.landCoverObj[coverType].parameters.
                kSatUpp005030, pcraster_filename)
            pcraster_filename = "kSatLow030150" + "_" + coverType + ".map"
            pcr.report(
                self.model.landSurface.landCoverObj[coverType].parameters.
                kSatLow030150, pcraster_filename)

            # "storCap"
            # minimum value is zero
            self.model.landSurface.landCoverObj[coverType].parameters.storCapUpp000005 = pcr.max(0.0, multiplier_for_storCap*\
                                                                                                      self.model.landSurface.landCoverObj[coverType].parameters.storCapUpp000005)
            self.model.landSurface.landCoverObj[coverType].parameters.storCapUpp005030 = pcr.max(0.0, multiplier_for_storCap*\
                                                                                                      self.model.landSurface.landCoverObj[coverType].parameters.storCapUpp005030)
            self.model.landSurface.landCoverObj[coverType].parameters.storCapLow030150 = pcr.max(0.0, multiplier_for_storCap*\
                                                                                                      self.model.landSurface.landCoverObj[coverType].parameters.storCapLow030150)
            # report the maps
            pcraster_filename = "storCapUpp000005" + "_" + coverType + ".map"
            pcr.report(
                self.model.landSurface.landCoverObj[coverType].parameters.
                storCapUpp000005, pcraster_filename)
            pcraster_filename = "storCapUpp005030" + "_" + coverType + ".map"
            pcr.report(
                self.model.landSurface.landCoverObj[coverType].parameters.
                storCapUpp005030, pcraster_filename)
            pcraster_filename = "storCapLow030150" + "_" + coverType + ".map"
            pcr.report(
                self.model.landSurface.landCoverObj[coverType].parameters.
                storCapLow030150, pcraster_filename)

        # re-calculate rootZoneWaterStorageCap as the consequence of the modification of "storCap"
        # This is WMAX in the oldcalc script.
        if self.model.landSurface.numberOfSoilLayers == 2:
            self.model.landSurface.parameters.rootZoneWaterStorageCap = self.model.landSurface.parameters.storCapUpp +\
                                                                                                self.model.landSurface.parameters.storCapLow
        if self.model.landSurface.numberOfSoilLayers == 3:
            self.model.landSurface.landCoverObj[coverType].parameters.rootZoneWaterStorageCap = self.model.landSurface.landCoverObj[coverType].parameters.storCapUpp000005 +\
                                                                                                self.model.landSurface.landCoverObj[coverType].parameters.storCapUpp005030 +\
                         self.model.landSurface.landCoverObj[coverType].parameters.storCapLow030150
        # report the map
        #pcraster_filename = "rootZoneWaterStorageCap"+ "_" + coverType + ".map"
        #pcr.report(self.model.landSurface.parameters.rootZoneWaterStorageCap, pcraster_filename)

        # "minSoilDepthFrac"
        if multiplier_for_minSoilDepthFrac != 1.0:

            for coverType in self.model.landSurface.coverTypes:

                # minimum value is zero
                self.model.landSurface.landCoverObj[coverType].minSoilDepthFrac = pcr.max(0.0, multiplier_for_minSoilDepthFrac*\
                                                               self.model.landSurface.landCoverObj[coverType].minSoilDepthFrac)
                # for minSoilDepthFrac - values will be limited by maxSoilDepthFrac
                self.model.landSurface.landCoverObj[coverType].minSoilDepthFrac = pcr.min(\
                                                               self.model.landSurface.landCoverObj[coverType].minSoilDepthFrac,\
                                                               self.model.landSurface.landCoverObj[coverType].maxSoilDepthFrac)
                # maximum value is 1.0
                self.model.landSurface.landCoverObj[
                    coverType].minSoilDepthFrac = pcr.min(
                        1.0, self.model.landSurface.landCoverObj[coverType].
                        minSoilDepthFrac)
                # report the map
                pcraster_filename = "minSoilDepthFrac" + "_" + coverType + ".map"
                pcr.report(
                    self.model.landSurface.landCoverObj[coverType].
                    minSoilDepthFrac, pcraster_filename)

                # re-calculate arnoBeta (as the consequence of the modification of minSoilDepthFrac)
                self.model.landSurface.landCoverObj[coverType].arnoBeta = pcr.max(0.001,\
                     (self.model.landSurface.landCoverObj[coverType].maxSoilDepthFrac-1.)/(1.-self.model.landSurface.landCoverObj[coverType].minSoilDepthFrac)+\
                                               self.model.landSurface.parameters.orographyBeta-0.01)
                self.model.landSurface.landCoverObj[coverType].arnoBeta = pcr.cover(pcr.max(0.001,\
                      self.model.landSurface.landCoverObj[coverType].arnoBeta), 0.001)
                # report the map
                pcraster_filename = "arnoBeta" + "_" + coverType + ".map"
                pcr.report(
                    self.model.landSurface.landCoverObj[coverType].arnoBeta,
                    pcraster_filename)

                # re-calculate rootZoneWaterStorageMin (as the consequence of the modification of minSoilDepthFrac)
                # This is WMIN in the oldcalc script.
                # WMIN (unit: m): minimum local soil water capacity within the grid-cell
                self.model.landSurface.landCoverObj[coverType].rootZoneWaterStorageMin = self.model.landSurface.landCoverObj[coverType].minSoilDepthFrac *\
                                                                                         self.model.landSurface.parameters.rootZoneWaterStorageCap
                # report the map
                pcraster_filename = "rootZoneWaterStorageMin" + "_" + coverType + ".map"
                pcr.report(
                    self.model.landSurface.landCoverObj[coverType].
                    rootZoneWaterStorageMin, pcraster_filename)

                # re-calculate rootZoneWaterStorageRange (as the consequence of the modification of rootZoneWaterStorageRange and minSoilDepthFrac)
                # WMAX - WMIN (unit: m)
                self.model.landSurface.landCoverObj[coverType].rootZoneWaterStorageRange = self.model.landSurface.parameters.rootZoneWaterStorageCap -\
                                                                                           self.model.landSurface.landCoverObj[coverType].rootZoneWaterStorageMin
                # report the map
                #pcraster_filename = "rootZoneWaterStorageRange"+ "_" + coverType + ".map"
                #pcr.report(self.model.landSurface.landCoverObj[coverType].rootZoneWaterStorageRange, pcraster_filename)

    def initial(self):
        pass

    def dynamic(self):

        # re-calculate current model time using current pcraster timestep value
        self.modelTime.update(self.currentTimeStep())

        # update model (will pick up current model time from model time object)

        self.model.read_forcings()
        self.model.update(report_water_balance=True)

        #do any needed reporting for this time step
        self.reporting.report()
Esempio n. 6
0
class BmiPCRGlobWB(EBmi):
    #we use the same epoch as pcrglobwb netcdf reporting
    def days_since_industry_epoch(self, modeltime):
        return (modeltime - datetime.date(1901, 1, 1)).days

    def in_modeltime(self, days_since_industry_epoch):
        return (datetime.datetime(1901, 1, 1) +
                datetime.timedelta(days=days_since_industry_epoch)).date()

    def calculate_shape(self):
        # return pcr.pcr2numpy(self.model.landmask, 1e20).shape
        return (pcr.clone().nrRows(), pcr.clone().nrCols())

    #BMI initialize (as a single step)
    def initialize(self, fileName):
        self.initialize_config(fileName)
        self.initialize_model()

    #EBMI initialize (first step of two)
    def initialize_config(self, fileName):
        logger.info("PCRGlobWB: initialize_config")

        try:

            self.configuration = Configuration(fileName,
                                               relative_ini_meteo_paths=True)
            pcr.setclone(self.configuration.cloneMap)

            # set start and end time based on configuration
            self.model_time = ModelTime()
            self.model_time.getStartEndTimeSteps(
                self.configuration.globalOptions['startTime'],
                self.configuration.globalOptions['endTime'])

            self.model_time.update(0)

            self.shape = self.calculate_shape()

            logger.info("Shape of maps is %s", str(self.shape))

            self.model = None

        except:
            import traceback
            traceback.print_exc()
            raise

    #EBMI initialize (second step of two)
    def initialize_model(self):
        if self.model is not None:
            #already initialized
            return

        try:

            logger.info("PCRGlobWB: initialize_model")

            initial_state = None
            self.model = PCRGlobWB(self.configuration, self.model_time,
                                   initial_state)

            self.reporting = Reporting(self.configuration, self.model,
                                       self.model_time)

            logger.info("Shape of maps is %s", str(self.shape))

            logger.info("PCRGlobWB Initialized")

        except:
            import traceback
            traceback.print_exc()
            raise

    def update(self):
        timestep = self.model_time.timeStepPCR

        self.model_time.update(timestep + 1)

        self.model.read_forcings()
        self.model.update(report_water_balance=True)
        self.reporting.report()

    #         #numpy = pcr.pcr2numpy(self.model.landSurface.satDegUpp000005, 1e20)
    #         numpy = pcr.pcr2numpy(self.model.landSurface.satDegUpp000005, np.NaN)
    #         print numpy.shape
    #         print numpy

    def update_until(self, time):
        while self.get_current_time() + 0.001 < time:
            self.update()

    def update_frac(self, time_frac):
        raise NotImplementedError

    def finalize(self):
        pass

    def get_component_name(self):
        return "pcrglobwb"

    def get_input_var_names(self):
        return ["top_layer_soil_saturation"]

    def get_output_var_names(self):
        return ["top_layer_soil_saturation"]

    def get_var_type(self, long_var_name):
        return 'float64'

    def get_var_units(self, long_var_name):
        #TODO: this is not a proper unit
        return '1'

    def get_var_rank(self, long_var_name):
        return 0

    def get_var_size(self, long_var_name):
        return np.prod(self.get_grid_shape(long_var_name))

    def get_var_nbytes(self, long_var_name):
        return self.get_var_size(long_var_name) * np.float64.itemsize

    def get_start_time(self):
        return self.days_since_industry_epoch(self.model_time.startTime)

    def get_current_time(self):
        return self.days_since_industry_epoch(self.model_time.currTime)

    def get_end_time(self):
        return self.days_since_industry_epoch(self.model_time.endTime)

    def get_time_step(self):
        return 1

    def get_time_units(self):
        return "Days since 1901-01-01"

    def get_value(self, long_var_name):
        logger.info("getting value for var %s", long_var_name)

        if (long_var_name == "top_layer_soil_saturation"):

            if self.model is not None and hasattr(self.model.landSurface,
                                                  'satDegUpp000005'):

                #first make all NanS into 0.0 with cover, then cut out the model using the landmask.
                # This should not actually make a difference.
                remasked = pcr.ifthen(
                    self.model.landmask,
                    pcr.cover(self.model.landSurface.satDegUpp000005, 0.0))

                pcr.report(self.model.landSurface.satDegUpp000005, "value.map")
                pcr.report(remasked, "remasked.map")

                value = pcr.pcr2numpy(remasked, np.NaN)

            else:
                logger.info(
                    "model has not run yet, returning empty state for top_layer_soil_saturation"
                )
                value = pcr.pcr2numpy(pcr.scalar(0.0), np.NaN)

            # print "getting var", value
            # sys.stdout.flush()

            doubles = value.astype(np.float64)

            # print "getting var as doubles!!!!", doubles

            result = np.flipud(doubles)

            # print "getting var as doubles flipped!!!!", result
            # sys.stdout.flush()

            return result
        else:
            raise Exception("unknown var name" + long_var_name)

    def get_value_at_indices(self, long_var_name, inds):
        raise NotImplementedError

    #     def get_satDegUpp000005_from_observation(self):
    #
    #         # assumption for observation values
    #         # - this should be replaced by values from the ECV soil moisture value (sattelite data)
    #         # - uncertainty should be included here
    #         # - note that the value should be between 0.0 and 1.0
    #         observed_satDegUpp000005 = pcr.min(1.0,\
    #                                    pcr.max(0.0,\
    #                                    pcr.normal(pcr.boolean(1)) + 1.0))
    #         return observed_satDegUpp000005

    def set_satDegUpp000005(self, src):
        mask = np.isnan(src)
        src[mask] = 1e20
        observed_satDegUpp000005 = pcr.numpy2pcr(pcr.Scalar, src, 1e20)

        pcr.report(observed_satDegUpp000005, "observed.map")

        constrained_satDegUpp000005 = pcr.min(
            1.0, pcr.max(0.0, observed_satDegUpp000005))

        pcr.report(constrained_satDegUpp000005, "constrained.map")

        pcr.report(self.model.landSurface.satDegUpp000005, "origmap.map")
        diffmap = constrained_satDegUpp000005 - self.model.landSurface.satDegUpp000005
        pcr.report(diffmap, "diffmap.map")

        # ratio between observation and model
        ratio_between_observation_and_model = pcr.ifthenelse(self.model.landSurface.satDegUpp000005 > 0.0,
                                                             constrained_satDegUpp000005 / \
                                                             self.model.landSurface.satDegUpp000005, 0.0)

        # updating upper soil states for all lad cover types
        for coverType in self.model.landSurface.coverTypes:
            # correcting upper soil state (storUpp000005)
            self.model.landSurface.landCoverObj[
                coverType].storUpp000005 *= ratio_between_observation_and_model

            # if model value = 0.0, storUpp000005 is calculated based on storage capacity (model parameter) and observed saturation degree
            self.model.landSurface.landCoverObj[coverType].storUpp000005 = pcr.ifthenelse(
                self.model.landSurface.satDegUpp000005 > 0.0, \
                self.model.landSurface.landCoverObj[coverType].storUpp000005, \
                constrained_satDegUpp000005 * self.model.landSurface.parameters.storCapUpp000005)
            # correct for any scaling issues (value < 0 or > 1 do not make sense
            self.model.landSurface.landCoverObj[
                coverType].storUpp000005 = pcr.min(
                    1.0,
                    pcr.max(
                        0.0, self.model.landSurface.landCoverObj[coverType].
                        storUpp000005))

    def set_value(self, long_var_name, src):

        if self.model is None or not hasattr(self.model.landSurface,
                                             'satDegUpp000005'):
            logger.info("cannot set value for %s, as model has not run yet.",
                        long_var_name)
            return

        logger.info("setting value for %s", long_var_name)

        # logger.info("dumping state to %s", self.configuration.endStateDir)
        # self.model.dumpStateDir(self.configuration.endStateDir + "/pre/")

        # print "got value to set", src

        # make sure the raster is the right side up
        src = np.flipud(src)

        # print "flipped", src

        # cast to pcraster precision
        src = src.astype(np.float32)

        # print "as float 32", src

        sys.stdout.flush()

        logger.info("setting value shape %s", src.shape)

        if (long_var_name == "top_layer_soil_saturation"):
            self.set_satDegUpp000005(src)
        else:
            raise Exception("unknown var name" + long_var_name)

        # write state here to facilitate restarting tomorrow
        # logger.info("dumping state to %s", self.configuration.endStateDir)
        # self.model.dumpStateDir(self.configuration.endStateDir + "/post/")

    def set_value_at_indices(self, long_var_name, inds, src):
        raise NotImplementedError

    def get_grid_type(self, long_var_name):
        return BmiGridType.UNIFORM

    def get_grid_shape(self, long_var_name):
        return

    def get_grid_shape(self, long_var_name):
        return self.shape

    def get_grid_spacing(self, long_var_name):

        cellsize = pcr.clone().cellSize()

        return np.array([cellsize, cellsize])

    def get_grid_origin(self, long_var_name):

        north = pcr.clone().north()
        cellSize = pcr.clone().cellSize()
        nrRows = pcr.clone().nrRows()

        south = north - (cellSize * nrRows)

        west = pcr.clone().west()

        return np.array([south, west])

    def get_grid_x(self, long_var_name):
        raise ValueError

    def get_grid_y(self, long_var_name):
        raise ValueError

    def get_grid_z(self, long_var_name):
        raise ValueError

    def get_grid_connectivity(self, long_var_name):
        raise ValueError

    def get_grid_offset(self, long_var_name):
        raise ValueError

    #EBMI functions

    def set_start_time(self, start_time):
        self.model_time.setStartTime(self.in_modeltime(start_time))

    def set_end_time(self, end_time):
        self.model_time.setEndTime(self.in_modeltime(end_time))

    def get_attribute_names(self):
        raise NotImplementedError

    def get_attribute_value(self, attribute_name):
        raise NotImplementedError

    def set_attribute_value(self, attribute_name, attribute_value):
        raise NotImplementedError

    def save_state(self, destination_directory):
        logger.info("saving state to %s", destination_directory)
        self.model.dumpStateDir(destination_directory)

    def load_state(self, source_directory):
        raise NotImplementedError