Esempio n. 1
0
def run_tuner_loop(ns):
    """Run tuning loop for this worker."""
    is_chief = FLAGS.task_id == 0
    tuning_space = ns.define_tuner_hparam_space(
        hparam_space_type=FLAGS.hparam_space)
    fixed_hparams = parse_hparams_string(FLAGS.fixed_hparams)
    for name in fixed_hparams:
        value = fixed_hparams.get(name)
        tuning_space[name] = [value]
    tuning_space_size = np.prod(
        [len(values) for values in tuning_space.values()])

    num_local_trials, remainder = divmod(tuning_space_size, FLAGS.num_tuners)
    if FLAGS.tuner_id < remainder:
        num_local_trials += 1
    starting_trial_id = (num_local_trials * FLAGS.tuner_id +
                         min(remainder, FLAGS.tuner_id))

    logging.info('tuning_space_size: %d', tuning_space_size)
    logging.info('num_local_trials: %d', num_local_trials)
    logging.info('starting_trial_id: %d', starting_trial_id)

    for local_trial_index in xrange(num_local_trials):
        trial_config = defaults.default_config_with_updates(FLAGS.config)
        global_trial_index = local_trial_index + starting_trial_id
        trial_name = 'trial_' + str(global_trial_index)
        trial_dir = os.path.join(FLAGS.logdir, trial_name)
        hparams = hparams_for_index(global_trial_index, tuning_space)
        ns.write_hparams_to_config(trial_config,
                                   hparams,
                                   hparam_space_type=FLAGS.hparam_space)

        results_list = ns.run_training(config=trial_config,
                                       tuner=None,
                                       logdir=trial_dir,
                                       is_chief=is_chief,
                                       trial_name=trial_name)

        if not is_chief:
            # Only chief worker needs to write tuning results to disk.
            continue

        objective, metrics = compute_tuning_objective(
            results_list, hparams, trial_name, num_trials=tuning_space_size)
        logging.info('metrics:\n%s', metrics)
        logging.info('objective: %s', objective)
        logging.info('programs_seen_fraction: %s',
                     metrics['programs_seen_fraction'])
        logging.info('success_rate: %s', metrics['success_rate'])
        logging.info('success_rate_objective_weight: %s',
                     FLAGS.success_rate_objective_weight)

        tuning_results_file = os.path.join(trial_dir, 'tuning_results.txt')
        with tf.gfile.FastGFile(tuning_results_file, 'a') as writer:
            writer.write(str(metrics) + '\n')

        logging.info('Trial %s complete.', trial_name)
Esempio n. 2
0
 def testMakeTask(self):
     maxlen = 100
     padchr = '['
     config = defaults.default_config_with_updates(
         'env=c(config_for_iclr=False,fixed_string=[8,5,12,12,15])')
     task = code_tasks.make_task(config.env, 'print')
     reward_fns = task.rl_batch(1)
     r = reward_fns[0]
     self.assertClose(
         r('++++++++.---.+++++++...').episode_rewards[-1], 0.2444)
     self.assertClose(
         r('++++++++.---.+++++++..+++.').episode_rewards[-1], 0.935)
     self.assertClose(
         r(pad('++++++++.---.+++++++..+++.', maxlen,
               padchr)).episode_rewards[-1], 0.75)
Esempio n. 3
0
    def RunTrainingSteps(config_string, num_steps=10):
        """Run a few training steps with the given config.

    Just check that nothing crashes.

    Args:
      config_string: Config encoded in a string. See
          $REPO_PATH/common/config_lib.py
      num_steps: Number of training steps to run. Defaults to 10.
    """
        config = defaults.default_config_with_updates(config_string)
        FLAGS.max_npe = num_steps * config.batch_size
        FLAGS.logdir = tf.test.get_temp_dir()
        FLAGS.config = config_string
        run.main(None)
Esempio n. 4
0
    def testVarUpdates(self):
        """Tests that variables get updated as expected.

    For the RL update, check that gradients are non-zero and that the global
    model gets updated.
    """
        config = defaults.default_config_with_updates(
            'env=c(task="reverse"),'
            'agent=c(algorithm="pg",eos_token=True,optimizer="sgd",lr=1.0)')
        lr = config.agent.lr

        tf.reset_default_graph()
        trainer = pg_train.AsyncTrainer(config,
                                        task_id=0,
                                        ps_tasks=0,
                                        num_workers=1)
        global_init_op = tf.variables_initializer(
            tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'global'))
        with tf.Session() as sess:
            sess.run(global_init_op)  # Initialize global copy.
            trainer.initialize(sess)
            model = trainer.model
            global_vars = sess.run(trainer.global_model.trainable_variables)
            local_vars = sess.run(model.trainable_variables)

            # Make sure names match.
            g_prefix = 'global/'
            l_prefix = 'local/'
            for g, l in zip(trainer.global_model.trainable_variables,
                            model.trainable_variables):
                self.assertEqual(g.name[len(g_prefix):],
                                 l.name[len(l_prefix):])

            # Assert that shapes and values are the same between global and local
            # models.
            for g, l in zip(global_vars, local_vars):
                self.assertEqual(g.shape, l.shape)
                self.assertTrue(np.array_equal(g, l))

            # Make all gradients dense tensors.
            for param, grad in model.gradients_dict.items():
                if isinstance(grad, tf.IndexedSlices):
                    # Converts to dense tensor.
                    model.gradients_dict[param] = tf.multiply(grad, 1.0)

            # Perform update.
            results = model.update_step(sess,
                                        trainer.data_manager.sample_rl_batch(),
                                        trainer.train_op,
                                        trainer.global_step,
                                        return_gradients=True)
            grads_dict = results.gradients_dict
            for grad in grads_dict.values():
                self.assertIsNotNone(grad)
                self.assertTrue(np.count_nonzero(grad) > 0)
            global_update = sess.run(trainer.global_model.trainable_variables)
            for tf_var, var_before, var_after in zip(model.trainable_variables,
                                                     local_vars,
                                                     global_update):
                # Check that the params were updated.
                self.assertTrue(
                    np.allclose(var_after,
                                var_before - grads_dict[tf_var] * lr))

            # Test that global to local sync works.
            sess.run(trainer.sync_op)
            global_vars = sess.run(trainer.global_model.trainable_variables)
            local_vars = sess.run(model.trainable_variables)
            for l, g in zip(local_vars, global_vars):
                self.assertTrue(np.allclose(l, g))
Esempio n. 5
0
    def testNumericalGradChecking(self):
        # Similar to
        # http://ufldl.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization.
        epsilon = 1e-4
        eos = misc.BF_EOS_INT
        self.assertEqual(0, eos)
        config = defaults.default_config_with_updates(
            'env=c(task="print"),'
            'agent=c(algorithm="pg",optimizer="sgd",lr=1.0,ema_baseline_decay=0.99,'
            'entropy_beta=0.0,topk_loss_hparam=0.0,policy_lstm_sizes=[10],'
            'eos_token=True),'
            'batch_size=64')
        dtype = tf.float64
        tf.reset_default_graph()
        tf.set_random_seed(12345678987654321)
        np.random.seed(1294024302)
        trainer = pg_train.AsyncTrainer(config,
                                        task_id=0,
                                        ps_tasks=0,
                                        num_workers=1,
                                        dtype=dtype)
        model = trainer.model
        actions_ph = model.actions
        lengths_ph = model.adjusted_lengths
        multipliers_ph = model.policy_multipliers
        loss = model.pi_loss
        global_init_op = tf.variables_initializer(
            tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'global'))

        assign_add_placeholders = [None] * len(model.trainable_variables)
        assign_add_ops = [None] * len(model.trainable_variables)
        param_shapes = [None] * len(model.trainable_variables)
        for i, param in enumerate(model.trainable_variables):
            param_shapes[i] = param.get_shape().as_list()
            assign_add_placeholders[i] = tf.placeholder(
                dtype, np.prod(param_shapes[i]))
            assign_add_ops[i] = param.assign_add(
                tf.reshape(assign_add_placeholders[i], param_shapes[i]))

        with tf.Session() as sess:
            sess.run(global_init_op)  # Initialize global copy.
            trainer.initialize(sess)

            actions_raw = [random_sequence(10, 9) for _ in xrange(16)]
            actions_batch = utils.stack_pad(actions_raw, 0)
            lengths_batch = [len(l) for l in actions_raw]
            feed = {
                actions_ph: actions_batch,
                multipliers_ph: np.ones_like(actions_batch),
                lengths_ph: lengths_batch
            }

            estimated_grads = [None] * len(model.trainable_variables)
            for i, param in enumerate(model.trainable_variables):
                param_size = np.prod(param_shapes[i])
                estimated_grads[i] = np.zeros(param_size, dtype=np.float64)
                for index in xrange(param_size):
                    e = onehot(index, param_size) * epsilon
                    sess.run(assign_add_ops[i],
                             {assign_add_placeholders[i]: e})
                    j_plus = sess.run(loss, feed)
                    sess.run(assign_add_ops[i],
                             {assign_add_placeholders[i]: -2 * e})
                    j_minus = sess.run(loss, feed)
                    sess.run(assign_add_ops[i],
                             {assign_add_placeholders[i]: e})
                    estimated_grads[i][index] = (j_plus - j_minus) / (2 *
                                                                      epsilon)
                estimated_grads[i] = estimated_grads[i].reshape(
                    param_shapes[i])

            analytic_grads = sess.run(model.dense_unclipped_grads, feed)

            for g1, g2 in zip(estimated_grads[1:], analytic_grads[1:]):
                logging.info('norm (g1-g2): %s', np.abs(g1 - g2).mean())
                self.assertTrue(np.allclose(g1, g2))
Esempio n. 6
0
    def testMonteCarloGradients(self):
        """Test Monte Carlo estimate of REINFORCE gradient.

    Test that the Monte Carlo estimate of the REINFORCE gradient is
    approximately equal to the true gradient. We compute the true gradient for a
    toy environment with a very small action space.

    Similar to section 5 of https://arxiv.org/pdf/1505.00521.pdf.
    """
        # Test may have different outcome on different machines due to different
        # rounding behavior of float arithmetic.
        tf.reset_default_graph()
        tf.set_random_seed(12345678987654321)
        np.random.seed(1294024302)
        max_length = 2
        num_tokens = misc.bf_num_tokens()
        eos = misc.BF_EOS_INT
        assert eos == 0

        def sequence_iterator(max_length):
            """Iterates through all sequences up to the given length."""
            yield [eos]
            for a in xrange(1, num_tokens):
                if max_length > 1:
                    for sub_seq in sequence_iterator(max_length - 1):
                        yield [a] + sub_seq
                else:
                    yield [a]

        actions = list(sequence_iterator(max_length))

        # This batch contains all possible episodes up to max_length.
        actions_batch = utils.stack_pad(actions, 0)
        lengths_batch = [len(s) for s in actions]

        reward_map = {
            tuple(a): np.random.randint(-1, 7)
            for a in actions_batch
        }
        # reward_map = {tuple(a): np.random.normal(3, 1)
        #               for a in actions_batch}  # normal distribution
        # reward_map = {tuple(a): 1.0
        #               for a in actions_batch}  # expected reward is 1

        n = 100000  # MC sample size.
        config = defaults.default_config_with_updates(
            'env=c(task="print"),'
            'agent=c(algorithm="pg",optimizer="sgd",lr=1.0,ema_baseline_decay=0.99,'
            'entropy_beta=0.0,topk_loss_hparam=0.0,regularizer=0.0,'
            'policy_lstm_sizes=[10],eos_token=True),'
            'batch_size=' + str(n) + ',timestep_limit=' + str(max_length))

        dtype = tf.float64
        trainer = pg_train.AsyncTrainer(config,
                                        task_id=0,
                                        ps_tasks=0,
                                        num_workers=1,
                                        dtype=dtype)
        model = trainer.model
        actions_ph = model.actions
        lengths_ph = model.adjusted_lengths
        multipliers_ph = model.policy_multipliers

        global_init_op = tf.variables_initializer(
            tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, 'global'))
        with tf.Session() as sess, sess.graph.as_default():
            sess.run(global_init_op)  # Initialize global copy.
            trainer.initialize(sess)

            # Compute exact gradients.
            # exact_grads = sum(P(a) * grad(log P(a)) * R(a) for a in actions_batch)
            true_loss_unnormalized = 0.0
            exact_grads = [
                np.zeros(v.shape) for v in model.trainable_variables
            ]
            episode_probs_map = {}
            grads_map = {}
            for a_idx in xrange(len(actions_batch)):
                a = actions_batch[a_idx]
                grads_result, probs_result, loss = sess.run(
                    [
                        model.dense_unclipped_grads, model.chosen_probs,
                        model.loss
                    ], {
                        actions_ph: [a],
                        lengths_ph: [lengths_batch[a_idx]],
                        multipliers_ph: [
                            repeat_and_pad(reward_map[tuple(a)],
                                           lengths_batch[a_idx], max_length)
                        ]
                    })
                # Take product over time axis.
                episode_probs_result = np.prod(
                    probs_result[0, :lengths_batch[a_idx]])
                for i in range(0, len(exact_grads)):
                    exact_grads[i] += grads_result[i] * episode_probs_result
                episode_probs_map[tuple(a)] = episode_probs_result
                reward_map[tuple(a)] = reward_map[tuple(a)]
                grads_map[tuple(a)] = grads_result
                true_loss_unnormalized += loss
            # Normalize loss. Since each episode is feed into the model one at a time,
            # normalization needs to be done manually.
            true_loss = true_loss_unnormalized / float(len(actions_batch))

            # Compute Monte Carlo gradients.
            # E_a~P[grad(log P(a)) R(a)] is aprox. eq. to
            # sum(grad(log P(a)) R(a) for a in actions_sampled_from_P) / n
            # where len(actions_sampled_from_P) == n.
            #
            # In other words, sample from the policy and compute the gradients of the
            # log probs weighted by the returns. This will excersize the code in
            # agent.py
            sampled_actions, sampled_lengths = sess.run(
                [model.sampled_tokens, model.episode_lengths])
            pi_multipliers = [
                repeat_and_pad(reward_map[tuple(a)], l, max_length)
                for a, l in zip(sampled_actions, sampled_lengths)
            ]
            mc_grads_unnormalized, sampled_probs, mc_loss_unnormalized = sess.run(
                [model.dense_unclipped_grads, model.chosen_probs, model.loss],
                {
                    actions_ph: sampled_actions,
                    multipliers_ph: pi_multipliers,
                    lengths_ph: sampled_lengths
                })
            # Loss is already normalized across the minibatch, so no normalization
            # is needed.
            mc_grads = mc_grads_unnormalized
            mc_loss = mc_loss_unnormalized

        # Make sure true loss and MC loss are similar.
        loss_error = smape(true_loss, mc_loss)
        self.assertTrue(loss_error < 0.15, msg='actual: %s' % loss_error)

        # Check that probs computed for episodes sampled from the model are the same
        # as the recorded true probs.
        for i in range(100):
            acs = tuple(sampled_actions[i].tolist())
            sampled_prob = np.prod(sampled_probs[i, :sampled_lengths[i]])
            self.assertTrue(np.isclose(episode_probs_map[acs], sampled_prob))

        # Make sure MC estimates of true probs are close.
        counter = Counter(tuple(e) for e in sampled_actions)
        for acs in counter:
            count = counter.get(acs)
            mc_prob = count / float(len(sampled_actions))
            true_prob = episode_probs_map[acs]
            error = smape(mc_prob, true_prob)
            self.assertTrue(
                error < 0.15,
                msg='actual: %s; count: %s; mc_prob: %s; true_prob: %s' %
                (error, count, mc_prob, true_prob))

        # Manually recompute MC gradients and make sure they match MC gradients
        # computed in TF.
        mc_grads_recompute = [
            np.zeros(v.shape) for v in model.trainable_variables
        ]
        angle_frac = None
        for i in range(n):
            acs = tuple(sampled_actions[i].tolist())
            for i in range(0, len(mc_grads_recompute)):
                mc_grads_recompute[i] += grads_map[acs][i]
        for i in range(0, len(mc_grads_recompute)):
            self.assertTrue(np.allclose(mc_grads[i],
                                        mc_grads_recompute[i] / n))

        # Check angle between gradients as fraction of pi.
        for index in range(len(mc_grads)):
            v1 = mc_grads[index].reshape(-1)
            v2 = exact_grads[index].reshape(-1)
            # angle = arccos(v1 . v2 / (|v1|*|v2|))
            angle_rad = np.arccos(
                np.dot(v1, v2) / (np.linalg.norm(v1) * np.linalg.norm(v2)))
            logging.info('angle / pi: %s', angle_rad / np.pi)
            angle_frac = angle_rad / np.pi
            self.assertTrue(angle_frac < 0.02, msg='actual: %s' % angle_frac)
        # Check norms.
        for index in range(len(mc_grads)):
            v1_norm = np.linalg.norm(mc_grads[index].reshape(-1))
            v2_norm = np.linalg.norm(exact_grads[index].reshape(-1))
            error = smape(v1_norm, v2_norm)
            self.assertTrue(error < 0.02, msg='actual: %s' % error)

        # Check expected rewards.
        # E_a~P[R(a)] approx eq sum(P(a) * R(a) for a in actions)
        mc_expected_reward = np.mean(
            [reward_map[tuple(a)] for a in sampled_actions])
        exact_expected_reward = np.sum(
            [episode_probs_map[k] * reward_map[k] for k in reward_map])
        error = smape(mc_expected_reward, exact_expected_reward)
        self.assertTrue(error < 0.005, msg='actual: %s' % angle_frac)
Esempio n. 7
0
def run_training(
        config=None,
        tuner=None,
        logdir=None,
        trial_name=None,  # pylint: disable=unused-argument
        is_chief=True):
    """Do all training runs.

  This is the top level training function for policy gradient based models.
  Run this from the main function.

  Args:
    config: config_lib.Config instance containing global config (agent and
        environment hparams). If None, config will be parsed from FLAGS.config.
    tuner: (unused) A tuner instance. Leave as None if not tuning.
    logdir: Parent directory where all data from all runs will be written. If
        None, FLAGS.logdir will be used.
    trial_name: (unused) If tuning, set this to a unique string that identifies
        this trial. If `tuner` is not None, this also must be set.
    is_chief: True if this worker is the chief.

  Returns:
    List of results dicts which were written to disk. Each training run gets a
    results dict. Results dict contains metrics, i.e. (name, value) pairs which
    give information about the training run.

  Raises:
    ValueError: If FLAGS.num_workers does not divide FLAGS.num_repetitions.
    ValueError: If results dicts read from disk contain invalid data.
  """
    if not config:
        # If custom config is not given, get it from flags.
        config = defaults.default_config_with_updates(FLAGS.config)
    if not logdir:
        logdir = FLAGS.logdir

    if FLAGS.num_repetitions % FLAGS.num_workers != 0:
        raise ValueError('Number of workers must divide number of repetitions')
    num_local_reps = FLAGS.num_repetitions // FLAGS.num_workers
    logging.info('Running %d reps globally.', FLAGS.num_repetitions)
    logging.info('This worker will run %d local reps.', num_local_reps)
    if FLAGS.max_npe:
        max_generations = FLAGS.max_npe // config.batch_size
        logging.info('Max samples per rep: %d', FLAGS.max_npe)
        logging.info('Max generations per rep: %d', max_generations)
    else:
        max_generations = sys.maxsize
        logging.info('Running unlimited generations.')

    assert FLAGS.num_workers > 0
    logging.info('Starting experiment. Directory: "%s"', logdir)
    results = results_lib.Results(logdir, FLAGS.task_id)
    local_results_list = results.read_this_shard()
    if local_results_list:
        if local_results_list[0]['max_npe'] != FLAGS.max_npe:
            raise ValueError(
                'Cannot resume training. Max-NPE changed. Was %s, now %s',
                local_results_list[0]['max_npe'], FLAGS.max_npe)
        if local_results_list[0][
                'max_global_repetitions'] != FLAGS.num_repetitions:
            raise ValueError(
                'Cannot resume training. Number of repetitions changed. Was %s, '
                'now %s', local_results_list[0]['max_global_repetitions'],
                FLAGS.num_repetitions)
    start_rep = len(local_results_list)

    for rep in xrange(start_rep, num_local_reps):
        global_rep = num_local_reps * FLAGS.task_id + rep
        logging.info('Starting repetition: Rep = %d. (global rep = %d)', rep,
                     global_rep)

        # Save data for each rep, like checkpoints, goes into separate folders.
        run_dir = os.path.join(logdir, 'run_%d' % global_rep)

        if not tf.gfile.IsDirectory(run_dir):
            tf.gfile.MakeDirs(run_dir)
        checkpoint_writer = CheckpointWriter(run_dir,
                                             population_size=config.batch_size)

        data_manager = data.DataManager(config, run_number=global_rep)
        task_eval_fn = ga_lib.make_task_eval_fn(data_manager.rl_task)

        if config.agent.algorithm == 'rand':
            logging.info('Running random search.')
            assert FLAGS.max_npe
            result = run_random_search(FLAGS.max_npe, run_dir, task_eval_fn,
                                       config.timestep_limit)
        else:
            assert config.agent.algorithm == 'ga'
            logging.info('Running genetic algorithm.')
            pop = ga_lib.make_population(ga_lib.random_individual(
                config.timestep_limit),
                                         n=config.batch_size)
            hof = utils.MaxUniquePriorityQueue(2)  # Hall of fame.
            result = ga_lib.ga_loop(pop,
                                    cxpb=config.agent.crossover_rate,
                                    mutpb=config.agent.mutation_rate,
                                    task_eval_fn=task_eval_fn,
                                    ngen=max_generations,
                                    halloffame=hof,
                                    checkpoint_writer=checkpoint_writer)

        logging.info('Finished rep. Num gens: %d', result.generations)

        results_dict = {
            'max_npe': FLAGS.max_npe,
            'batch_size': config.batch_size,
            'max_batches': FLAGS.max_npe // config.batch_size,
            'npe': result.num_programs,
            'max_global_repetitions': FLAGS.num_repetitions,
            'max_local_repetitions': num_local_reps,
            'code_solution': result.best_code if result.solution_found else '',
            'best_reward': result.reward,
            'num_batches': result.generations,
            'found_solution': result.solution_found,
            'task': data_manager.task_name,
            'global_rep': global_rep
        }
        logging.info('results_dict: %s', results_dict)
        results.append(results_dict)

    if is_chief:
        logging.info(
            'Worker is chief. Waiting for all workers to finish so that results '
            'can be reported to the tuner.')

        global_results_list, shard_stats = results.read_all(
            num_shards=FLAGS.num_workers)
        while not all(s.finished for s in shard_stats):
            logging.info(
                'Still waiting on these workers: %s', ', '.join([
                    '%d (%d reps left)' %
                    (i, s.max_local_reps - s.num_local_reps_completed)
                    for i, s in enumerate(shard_stats) if not s.finished
                ]))
            sleep(60)
            global_results_list, shard_stats = results.read_all(
                num_shards=FLAGS.num_workers)

        logging.info(
            '%d results obtained. Chief worker is exiting the experiment.',
            len(global_results_list))

        return global_results_list