Esempio n. 1
0
def multiSpectra(
    ncores: int,
    timeDataList: List[TimeData],
    sampleFreq: float,
    windowSize: int,
    config: Dict[str, None] = None,
):
    """Multiprocessing of spectra

    Parameters
    ----------
    ncores: int
        The number of cores for multiprocessing
    timeDataList : List[TimeData]
        A list of TimeData objects
    sampleFreq : float
        The sampling frequency of the TimeData
    windowSize : int
        The number of samples in the window
    
    Returns
    -------
    specDataList : List[SpectrumData]
        A list of spectra data    
    """
    import multiprocessing as mp

    # separate time data into batches
    numWindows = len(timeDataList)
    batchSize = int(np.ceil(numWindows / ncores))
    batches = []
    sizes = []
    for iB in range(0, ncores):
        batchStartWin = iB * batchSize
        if batchStartWin >= numWindows:
            break
        batchEndWin = batchStartWin + batchSize
        if batchEndWin > numWindows:
            batchEndWin = numWindows
        batch = []
        for iW in range(batchStartWin, batchEndWin):
            batch.append(timeDataList[iW])
        batches.append(batch)
        sizes.append(str(len(batch)))
    # set up tuples
    multiTuples = [(batch, sampleFreq, windowSize, config)
                   for batch in batches]
    # multiprocess
    projectText("Running spectra calculations on {} cores".format(ncores))
    projectText("{} windows being run in {} batches with sizes {}".format(
        numWindows, len(batches), ", ".join(sizes)))
    with mp.Pool(ncores) as pool:
        out = pool.starmap(calculateWindowSpectra, multiTuples)
    # format the output into a single list
    specDataList = []
    for outBatch in out:
        specDataList = specDataList + outBatch
    return specDataList
Esempio n. 2
0
def getTransferFunctionData(projData: ProjectData, site: str,
                            sampleFreq: float,
                            **kwargs) -> TransferFunctionData:
    """Get transfer function data

    Parameters
    ----------
    projData : projecData
        The project data
    site : str
        Site to get the transfer functiond data for
    sampleFreq : int, float
        The sampling frequency for which to get the transfer function data
    specdir : str, optional
        The spectra directories used
    postpend : str, optional
        The postpend on the transfer function files
    """
    from resistics.transfunc.io import TransferFunctionReader

    options: Dict = dict()
    options["specdir"]: str = projData.config.configParams["Spectra"][
        "specdir"]
    options["postpend"]: str = ""
    options = parseKeywords(options, kwargs)

    # deal with the postpend
    if options["postpend"] != "":
        postpend = "_{}".format(options["postpend"])
    else:
        postpend = options["postpend"]

    siteData = projData.getSiteData(site)
    sampleFreqStr = fileFormatSampleFreq(sampleFreq)
    path = os.path.join(
        siteData.transFuncPath,
        "{:s}".format(sampleFreqStr),
        "{}_fs{:s}_{}{}".format(site, sampleFreqStr, options["specdir"],
                                postpend),
    )
    # check path
    if not checkFilepath(path):
        projectWarning("No transfer function file with name {}".format(path))
        return False

    projectText(
        "Reading transfer function for site {}, sample frequency {}, file {}".
        format(site, sampleFreq, path))

    tfReader = TransferFunctionReader(path)
    tfReader.printInfo()
    return tfReader.tfData
Esempio n. 3
0
def multiStatistics(
    ncores: int,
    spectraData: List[SpectrumData],
    evalFreq: np.ndarray,
    stats: List[str],
    remoteData: Union[List[SpectrumData], None] = None,
):
    """Multiprocessing of statistics
    
    Parameters
    ----------
    ncores : int
        The number of cores to use    
    spectraData : List[SpectrumData]
        List of spectrum data to process
    evalFreq : np.ndarray
        The evaluation frequencies
    stats : List[str]
        The statistics to calculate
    remoteData : None, List[SpectrumData]
        Remote data in case of remote reference statistics. None is default

    Returns
    -------
    List[Dict[str, Any]]
        The statistic data returned as a list with an entry for every window. The dictionary maps the statistic name to the data for that window.
    """
    import multiprocessing as mp

    # prepare the lists
    if remoteData is None:
        multiTuples = [(winSpecData, evalFreq, stats) for winSpecData in spectraData]
    else:
        multiTuples = [
            (winSpecData, evalFreq, stats, remoteSpecData)
            for winSpecData, remoteSpecData in zip(spectraData, remoteData)
        ]
    # multiprocess
    projectText("Running statistic calculations on {} cores".format(ncores))
    with mp.Pool(ncores) as pool:
        out = pool.starmap(calculateWindowStatistics, multiTuples)
    return out
Esempio n. 4
0
def loadProject(projectPath: str, configFile: str = "") -> ProjectData:
    """Load an existing project

    Parameters
    ----------
    projectPath : str
        Path for the project directory
    configFile : str
        Path to a configuration file

    Returns
    -------
    ProjectData
        A project data object
    """
    # search for the .prj file (hopefully only one)
    gl = glob.glob(os.path.join(projectPath, "*.prj"))
    if len(gl) == 0:
        projectError(
            "Unable to find project file in path: {}".format(projectPath))
    projectFile: str = os.path.basename(gl[0])
    projectText("Loading project file: {}".format(
        os.path.join(projectPath, projectFile)))
    projectPaths = loadProjectFile(os.path.join(projectPath, projectFile))

    # check the configuration file
    config = ConfigData(configFile)
    proj = ProjectData(
        projectFile,
        projectPaths["refTime"],
        projectPaths["calPath"],
        projectPaths["timePath"],
        projectPaths["specPath"],
        projectPaths["statPath"],
        projectPaths["maskPath"],
        projectPaths["transFuncPath"],
        projectPaths["imagePath"],
        config=config,
    )
    proj.printInfo()
    proj.config.printInfo()
    return proj
Esempio n. 5
0
def calculateSpectra(projData: ProjectData, **kwargs) -> None:
    """Calculate spectra for the project time data

    The philosophy is that spectra are calculated out for all data and later limited using statistics and time constraints

    Parameters
    ----------
    projData : ProjectData
        A project data object
    sites : str, List[str], optional
        Either a single site or a list of sites
    sampleFreqs : int, float, List[float], optional
        The frequencies in Hz for which to calculate the spectra. Either a single frequency or a list of them.
    chans : List[str], optional
        The channels for which to calculate out the spectra
    polreverse :  Dict[str, bool]
        Keys are channels and values are boolean flags for reversing
    scale : Dict[str, float]
        Keys are channels and values are floats to multiply the channel data by
    calibrate : bool, optional
        Flag whether to calibrate the data or not
    notch : List[float], optional
        List of frequencies to notch
    filter : Dict, optional
        Filter parameters
    specdir : str, optional
        The spectra directory to save the spectra data in
    ncores : int, optional
        The number of cores to run the transfer function calculations on        
    """
    from resistics.spectra.io import SpectrumWriter
    from resistics.decimate.decimator import Decimator
    from resistics.window.windower import Windower
    from resistics.project.shortcuts import (
        getCalibrator,
        getDecimationParameters,
        getWindowParameters,
    )
    from resistics.project.preprocess import (
        applyPolarisationReversalOptions,
        applyScaleOptions,
        applyCalibrationOptions,
        applyFilterOptions,
        applyNotchOptions,
    )

    options = {}
    options["sites"] = projData.getSites()
    options["sampleFreqs"]: List[float] = projData.getSampleFreqs()
    options["chans"]: List[str] = []
    options["polreverse"]: Union[bool, Dict[str, bool]] = False
    options["scale"]: Union[bool, Dict[str, float]] = False
    options["calibrate"]: bool = True
    options["notch"]: List[float] = []
    options["filter"]: Dict = {}
    options["specdir"]: str = projData.config.configParams["Spectra"][
        "specdir"]
    options["ncores"] = projData.config.getSpectraCores()
    options = parseKeywords(options, kwargs)

    # prepare calibrator
    cal = getCalibrator(projData.calPath, projData.config)
    if options["calibrate"]:
        cal.printInfo()

    datetimeRef = projData.refTime
    for site in options["sites"]:
        siteData = projData.getSiteData(site)
        siteData.printInfo()

        # calculate spectra for each frequency
        for sampleFreq in options["sampleFreqs"]:
            measurements = siteData.getMeasurements(sampleFreq)
            projectText(
                "Site {} has {:d} measurement(s) at sampling frequency {:.2f}".
                format(site, len(measurements), sampleFreq))
            if len(measurements) == 0:
                continue  # no data files at this sample rate

            for meas in measurements:
                projectText(
                    "Calculating spectra for site {} and measurement {}".
                    format(site, meas))
                # get measurement start and end times - this is the time of the first and last sample
                reader = siteData.getMeasurement(meas)
                startTime = siteData.getMeasurementStart(meas)
                stopTime = siteData.getMeasurementEnd(meas)
                dataChans = (options["chans"] if len(options["chans"]) > 0 else
                             reader.getChannels())
                timeData = reader.getPhysicalData(startTime,
                                                  stopTime,
                                                  chans=dataChans)
                timeData.addComment(breakComment())
                timeData.addComment("Calculating project spectra")
                timeData.addComment(projData.config.getConfigComment())
                # apply various options
                applyPolarisationReversalOptions(options, timeData)
                applyScaleOptions(options, timeData)
                applyCalibrationOptions(options, cal, timeData, reader)
                applyFilterOptions(options, timeData)
                applyNotchOptions(options, timeData)
                # define decimation and window parameters
                decParams = getDecimationParameters(sampleFreq,
                                                    projData.config)
                numLevels = decParams.numLevels
                winParams = getWindowParameters(decParams, projData.config)
                dec = Decimator(timeData, decParams)
                timeData.addComment(
                    "Decimating with {} levels and {} frequencies per level".
                    format(numLevels, decParams.freqPerLevel))

                # loop through decimation levels
                for declevel in range(0, numLevels):
                    # get the data for the current level
                    check = dec.incrementLevel()
                    if not check:
                        break  # not enough data
                    timeData = dec.timeData

                    # create the windower and give it window parameters for current level
                    sampleFreqDec = dec.sampleFreq
                    win = Windower(
                        datetimeRef,
                        timeData,
                        winParams.getWindowSize(declevel),
                        winParams.getOverlap(declevel),
                    )
                    if win.numWindows < 2:
                        break  # do no more decimation

                    # print information and add some comments
                    projectText(
                        "Calculating spectra for decimation level {}".format(
                            declevel))
                    timeData.addComment(
                        "Evaluation frequencies for this level {}".format(
                            listToString(
                                decParams.getEvalFrequenciesForLevel(
                                    declevel))))
                    timeData.addComment(
                        "Windowing with window size {} samples and overlap {} samples"
                        .format(
                            winParams.getWindowSize(declevel),
                            winParams.getOverlap(declevel),
                        ))
                    if projData.config.configParams["Spectra"]["applywindow"]:
                        timeData.addComment(
                            "Performing fourier transform with window function {}"
                            .format(projData.config.configParams["Spectra"]
                                    ["windowfunc"]))
                    else:
                        timeData.addComment(
                            "Performing fourier transform with no window function"
                        )

                    # collect time data
                    timeDataList = []
                    for iW in range(0, win.numWindows):
                        timeDataList.append(win.getData(iW))

                    # open spectra file for saving
                    specPath = os.path.join(
                        siteData.getMeasurementSpecPath(meas),
                        options["specdir"])
                    specWrite = SpectrumWriter(specPath, datetimeRef)
                    specWrite.openBinaryForWriting(
                        "spectra",
                        declevel,
                        sampleFreqDec,
                        winParams.getWindowSize(declevel),
                        winParams.getOverlap(declevel),
                        win.winOffset,
                        win.numWindows,
                        dataChans,
                    )
                    if options["ncores"] > 0:
                        specDataList = multiSpectra(
                            options["ncores"],
                            timeDataList,
                            sampleFreqDec,
                            winParams.getWindowSize(declevel),
                            projData.config.configParams,
                        )
                    else:
                        specDataList = calculateWindowSpectra(
                            timeDataList,
                            sampleFreqDec,
                            winParams.getWindowSize(declevel),
                            projData.config.configParams,
                        )
                    # write out to spectra file
                    for iW in range(0, win.numWindows):
                        specWrite.writeBinary(specDataList[iW])
                    specWrite.writeCommentsFile(timeData.getComments())
                    specWrite.closeFile()
Esempio n. 6
0
def viewSpectraStack(projData: ProjectData, site: str, meas: str,
                     **kwargs) -> Union[Figure, None]:
    """View spectra stacks for a measurement

    Parameters
    ----------
    projData : projecData
        The project data
    site : str
        The site to view
    meas: str
        The measurement of the site to view
    chans : List[str], optional
        Channels to plot
    declevel : int, optional
        Decimation level to plot
    numstacks : int, optional
        The number of windows to stack
    coherences : List[List[str]], optional
        A list of coherences to add, specified as [["Ex", "Hy"], ["Ey", "Hx"]] 
    specdir : str, optional
        String that specifies spectra directory for the measurement
    show : bool, optional
        Show the spectra plot
    save : bool, optional
        Save the plot to the images directory
    plotoptions : Dict, optional
        Dictionary of plot options
    
    Returns
    -------
    matplotlib.pyplot.figure or None
        A matplotlib figure unless the plot is not shown and is saved, in which case None and the figure is closed. If no data was found, then None is returned.
    """
    from resistics.common.plot import savePlot, plotOptionsSpec, colorbarMultiline

    options = {}
    options["chans"] = []
    options["declevel"] = 0
    options["numstacks"] = 10
    options["coherences"] = []
    options["specdir"] = projData.config.configParams["Spectra"]["specdir"]
    options["show"] = True
    options["save"] = False
    options["plotoptions"] = plotOptionsSpec()
    options = parseKeywords(options, kwargs)

    projectText("Plotting spectra stack for measurement {} and site {}".format(
        meas, site))
    specReader = getSpecReader(projData, site, meas, **options)
    if specReader is None:
        return None

    # channels
    dataChans = specReader.getChannels()
    if len(options["chans"]) > 0:
        dataChans = options["chans"]
    numChans = len(dataChans)

    # get windows
    numWindows = specReader.getNumWindows()
    sampleFreqDec = specReader.getSampleFreq()
    f = specReader.getFrequencyArray()

    # calculate num of windows to stack in each set
    stackSize = int(np.floor(1.0 * numWindows / options["numstacks"]))
    if stackSize == 0:
        projectWarning("Too few windows for number of stacks {}".format(
            options["numstacks"]))
        options["numstacks"] = numWindows
        stackSize = 1
        projectWarning("Number of stacks changed to {}".format(
            options["numstacks"]))

    # calculate number of rows - in case interested in coherences too
    nrows = (2 if len(options["coherences"]) == 0 else 2 +
             np.ceil(1.0 * len(options["coherences"]) / numChans))

    # setup the figure
    plotfonts = options["plotoptions"]["plotfonts"]
    cmap = colorbarMultiline()
    fig = plt.figure(figsize=options["plotoptions"]["figsize"])
    st = fig.suptitle(
        "Spectra stack, fs = {:.6f} [Hz], decimation level = {:2d}, windows in each set = {:d}"
        .format(sampleFreqDec, options["declevel"], stackSize),
        fontsize=plotfonts["suptitle"],
    )
    st.set_y(0.98)

    # do the stacking
    for iP in range(0, options["numstacks"]):
        stackStart = iP * stackSize
        stackStop = min(stackStart + stackSize, numWindows)
        color = cmap(iP / options["numstacks"])
        # dictionaries to hold data for this section
        stackedData = {}
        ampData = {}
        phaseData = {}
        powerData = {}

        # assign initial zeros
        for c in dataChans:
            stackedData[c] = np.zeros(shape=(specReader.getDataSize()),
                                      dtype="complex")
            ampData[c] = np.zeros(shape=(specReader.getDataSize()),
                                  dtype="complex")
            phaseData[c] = np.zeros(shape=(specReader.getDataSize()),
                                    dtype="complex")
            for c2 in dataChans:
                powerData[c + c2] = np.zeros(shape=(specReader.getDataSize()),
                                             dtype="complex")

        # now stack the data and create nice plots
        for iW in range(stackStart, stackStop):
            winData = specReader.readBinaryWindowLocal(iW)
            for c in dataChans:
                stackedData[c] += winData.data[c]
                ampData[c] += np.absolute(winData.data[c])
                phaseData[c] += np.angle(winData.data[c]) * (180.0 / np.pi)
                # get coherency data
                for c2 in dataChans:
                    powerData[c + c2] += winData.data[c] * np.conjugate(
                        winData.data[c2])
            if iW == stackStart:
                startTime = winData.startTime
            if iW == stackStop - 1:
                stopTime = winData.stopTime

        # scale powers and stacks
        ampLim = options["plotoptions"]["amplim"]
        for idx, c in enumerate(dataChans):
            stackedData[c] = stackedData[c] / (stackStop - stackStart)
            ampData[c] = ampData[c] / (stackStop - stackStart)
            phaseData[c] = phaseData[c] / (stackStop - stackStart)
            for c2 in dataChans:
                # normalisation
                powerData[c + c2] = 2 * powerData[c + c2] / (stackStop -
                                                             stackStart)
                # normalisation
                powerData[c + c2][[0, -1]] = powerData[c + c2][[0, -1]] / 2

            # plot
            ax1 = plt.subplot(nrows, numChans, idx + 1)
            plt.title("Amplitude {}".format(c), fontsize=plotfonts["title"])
            h = ax1.semilogy(
                f,
                ampData[c],
                color=color,
                label="{} to {}".format(
                    startTime.strftime("%m-%d %H:%M:%S"),
                    stopTime.strftime("%m-%d %H:%M:%S"),
                ),
            )
            if len(ampLim) == 2:
                ax1.set_ylim(ampLim)
            else:
                ax1.set_ylim(0.01, 1000)
            ax1.set_xlim(0, sampleFreqDec / 2.0)
            if isMagnetic(c):
                ax1.set_ylabel("Amplitude [nT]",
                               fontsize=plotfonts["axisLabel"])
            else:
                ax1.set_ylabel("Amplitude [mV/km]",
                               fontsize=plotfonts["axisLabel"])
            ax1.set_xlabel("Frequency [Hz]", fontsize=plotfonts["axisLabel"])
            plt.grid(True)

            # set tick sizes
            for label in ax1.get_xticklabels() + ax1.get_yticklabels():
                label.set_fontsize(plotfonts["axisTicks"])
            # plot phase
            ax2 = plt.subplot(nrows, numChans, numChans + idx + 1)
            plt.title("Phase {}".format(c), fontsize=plotfonts["title"])
            ax2.plot(
                f,
                phaseData[c],
                color=color,
                label="{} to {}".format(
                    startTime.strftime("%m-%d %H:%M:%S"),
                    stopTime.strftime("%m-%d %H:%M:%S"),
                ),
            )
            ax2.set_ylim(-180, 180)
            ax2.set_xlim(0, sampleFreqDec / 2.0)
            ax2.set_ylabel("Phase [degrees]", fontsize=plotfonts["axisLabel"])
            ax2.set_xlabel("Frequency [Hz]", fontsize=plotfonts["axisLabel"])
            plt.grid(True)
            # set tick sizes
            for label in ax2.get_xticklabels() + ax2.get_yticklabels():
                label.set_fontsize(plotfonts["axisTicks"])

        # plot coherences
        for idx, coh in enumerate(options["coherences"]):
            c = coh[0]
            c2 = coh[1]
            cohNom = np.power(np.absolute(powerData[c + c2]), 2)
            cohDenom = powerData[c + c] * powerData[c2 + c2]
            coherence = cohNom / cohDenom
            ax = plt.subplot(nrows, numChans, 2 * numChans + idx + 1)
            plt.title("Coherence {} - {}".format(c, c2),
                      fontsize=plotfonts["title"])
            ax.plot(
                f,
                coherence,
                color=color,
                label="{} to {}".format(
                    startTime.strftime("%m-%d %H:%M:%S"),
                    stopTime.strftime("%m-%d %H:%M:%S"),
                ),
            )
            ax.set_ylim(0, 1.1)
            ax.set_xlim(0, sampleFreqDec / 2)
            ax.set_ylabel("Coherence", fontsize=plotfonts["axisLabel"])
            ax.set_xlabel("Frequency [Hz]", fontsize=plotfonts["axisLabel"])
            plt.grid(True)
            # set tick sizes
            for label in ax.get_xticklabels() + ax.get_yticklabels():
                label.set_fontsize(plotfonts["axisTicks"])

    # fig legend and layout
    ax = plt.gca()
    h, l = ax.get_legend_handles_labels()
    fig.tight_layout(rect=[0.01, 0.01, 0.98, 0.81])
    # legend
    legax = plt.axes(position=[0.01, 0.82, 0.98, 0.12], in_layout=False)
    plt.tick_params(left=False,
                    labelleft=False,
                    bottom=False,
                    labelbottom=False)
    plt.box(False)
    legax.legend(h,
                 l,
                 ncol=4,
                 loc="upper center",
                 fontsize=plotfonts["legend"])

    # plot show and save
    if options["save"]:
        impath = projData.imagePath
        filename = "spectraStack_{}_{}_dec{}_{}".format(
            site, meas, options["declevel"], options["specdir"])
        savename = savePlot(impath, filename, fig)
        projectText("Image saved to file {}".format(savename))
    if options["show"]:
        plt.show(block=options["plotoptions"]["block"])
    if not options["show"] and options["save"]:
        plt.close(fig)
        return None
    return fig
Esempio n. 7
0
def viewSpectraSection(projData: ProjectData, site: str, meas: str,
                       **kwargs) -> Union[Figure, None]:
    """View spectra section for a measurement

    Parameters
    ----------
    projData : projecData
        The project data
    site : str
        The site to view
    meas: str
        The measurement of the site to view    
    chans : List[str], optional
        Channels to plot
    declevel : int, optional
        Decimation level to plot
    specdir : str, optional
        String that specifies spectra directory for the measurement
    show : bool, optional
        Show the spectra plot
    save : bool, optional
        Save the plot to the images directory
    plotoptions : Dict, optional
        Dictionary of plot options
    
    Returns
    -------
    matplotlib.pyplot.figure or None
        A matplotlib figure unless the plot is not shown and is saved, in which case None and the figure is closed. If no data was found, then None is returned.
    """
    from matplotlib.colors import LogNorm

    from resistics.common.plot import savePlot, plotOptionsSpec, colorbar2dSpectra

    options = {}
    options["chans"] = []
    options["declevel"] = 0
    options["specdir"] = projData.config.configParams["Spectra"]["specdir"]
    options["show"] = True
    options["save"] = False
    options["plotoptions"] = plotOptionsSpec()
    options = parseKeywords(options, kwargs)

    projectText(
        "Plotting spectra section for measurement {} and site {}".format(
            meas, site))
    specReader = getSpecReader(projData, site, meas, **options)
    if specReader is None:
        return None

    # channels
    dataChans = specReader.getChannels()
    if len(options["chans"]) > 0:
        dataChans = options["chans"]

    # get windows
    numWindows = specReader.getNumWindows()
    sampleFreqDec = specReader.getSampleFreq()
    f = specReader.getFrequencyArray()

    # if plotting a section, ignore plotwindow
    if numWindows > 250:
        windows = list(
            np.linspace(0, numWindows, 250, endpoint=False, dtype=np.int32))
    else:
        windows = np.arange(0, numWindows)

    # create figure
    plotfonts = options["plotoptions"]["plotfonts"]
    fig = plt.figure(figsize=options["plotoptions"]["figsize"])
    st = fig.suptitle(
        "Spectra section, site = {}, meas = {}, fs = {:.2f} [Hz], decimation level = {:2d}, windows = {:d}, {} to {}"
        .format(
            site,
            meas,
            sampleFreqDec,
            options["declevel"],
            len(windows),
            windows[0],
            windows[-1],
        ),
        fontsize=plotfonts["suptitle"],
    )
    st.set_y(0.98)

    # collect the data
    specData = np.empty(shape=(len(windows), len(dataChans),
                               specReader.getDataSize()),
                        dtype="complex")
    dates = []
    for idx, iW in enumerate(windows):
        winData = specReader.readBinaryWindowLocal(iW)
        for cIdx, chan in enumerate(dataChans):
            specData[idx, cIdx, :] = winData.data[chan]
        dates.append(winData.startTime)

    ampLim = options["plotoptions"]["amplim"]
    for idx, chan in enumerate(dataChans):
        ax = plt.subplot(1, len(dataChans), idx + 1)
        plotData = np.transpose(np.absolute(np.squeeze(specData[:, idx, :])))
        if len(ampLim) == 2:
            plt.pcolor(
                dates,
                f,
                plotData,
                norm=LogNorm(vmin=ampLim[0], vmax=ampLim[1]),
                cmap=colorbar2dSpectra(),
            )
        else:
            plt.pcolor(
                dates,
                f,
                plotData,
                norm=LogNorm(vmin=plotData.min(), vmax=plotData.max()),
                cmap=colorbar2dSpectra(),
            )
        cb = plt.colorbar()
        cb.ax.tick_params(labelsize=plotfonts["axisTicks"])
        # set axis limits
        ax.set_ylim(0, specReader.getSampleFreq() / 2.0)
        ax.set_xlim([dates[0], dates[-1]])
        if isMagnetic(chan):
            plt.title("Amplitude {} [nT]".format(chan),
                      fontsize=plotfonts["title"])
        else:
            plt.title("Amplitude {} [mV/km]".format(chan),
                      fontsize=plotfonts["title"])
        ax.set_ylabel("Frequency [Hz]", fontsize=plotfonts["axisLabel"])
        ax.set_xlabel("Time", fontsize=plotfonts["axisLabel"])
        # set tick sizes
        for label in ax.get_xticklabels() + ax.get_yticklabels():
            label.set_fontsize(plotfonts["axisTicks"])
        plt.grid(True)

    # plot format
    fig.autofmt_xdate(rotation=90, ha="center")
    fig.tight_layout(rect=[0.02, 0.02, 0.96, 0.92])

    # plot show and save
    if options["save"]:
        impath = projData.imagePath
        filename = "spectraSection_{}_{}_dec{}_{}".format(
            site, meas, options["declevel"], options["specdir"])
        savename = savePlot(impath, filename, fig)
        projectText("Image saved to file {}".format(savename))
    if options["show"]:
        plt.show(block=options["plotoptions"]["block"])
    if not options["show"] and options["save"]:
        plt.close(fig)
        return None
    return fig
Esempio n. 8
0
def viewSpectra(projData: ProjectData, site: str, meas: str,
                **kwargs) -> Union[Figure, None]:
    """View spectra for a measurement

    Parameters
    ----------
    projData : projecData
        The project data
    site : str
        The site to view
    meas: str
        The measurement of the site to view    
    chans : List[str], optional
        Channels to plot
    declevel : int, optional
        Decimation level to plot
    plotwindow : int, str, Dict, optional
        Windows to plot (local). If int, the window with local index plotwindow will be plotted. If string and "all", all the windows will be plotted if there are less than 20 windows, otherwise 20 windows throughout the whole spectra dataset will be plotted. If a dictionary, needs to have start and stop to define a range.
    specdir : str, optional
        String that specifies spectra directory for the measurement
    show : bool, optional
        Show the spectra plot
    save : bool, optional
        Save the plot to the images directory
    plotoptions : Dict, optional
        Dictionary of plot options
    
    Returns
    -------
    matplotlib.pyplot.figure or None
        A matplotlib figure unless the plot is not shown and is saved, in which case None and the figure is closed. If no data was found, then None is returned.
    """
    from resistics.common.plot import savePlot, plotOptionsSpec, colorbarMultiline

    options = {}
    options["chans"]: List[str] = []
    options["declevel"]: int = 0
    options["plotwindow"]: Union[int, Dict, str] = [0]
    options["specdir"]: str = projData.config.configParams["Spectra"][
        "specdir"]
    options["show"]: bool = True
    options["save"]: bool = False
    options["plotoptions"]: Dict = plotOptionsSpec()
    options = parseKeywords(options, kwargs)

    projectText("Plotting spectra for measurement {} and site {}".format(
        meas, site))
    specReader = getSpecReader(projData, site, meas, **options)
    if specReader is None:
        return None

    # channels
    dataChans = specReader.getChannels()
    if len(options["chans"]) > 0:
        dataChans = options["chans"]
    numChans = len(dataChans)

    # get windows
    numWindows = specReader.getNumWindows()
    sampleFreqDec = specReader.getSampleFreq()

    # get the window data
    windows = options["plotwindow"]
    if isinstance(windows, str) and windows == "all":
        if numWindows > 20:
            windows = list(
                np.linspace(0, numWindows, 20, endpoint=False, dtype=np.int32))
        else:
            windows = list(np.arange(0, numWindows))
    elif isinstance(windows, int):
        windows = [windows]  # if an integer, make it into a list
    elif isinstance(windows, dict):
        windows = list(np.arange(windows["start"], windows["stop"] + 1))

    # create a figure
    plotfonts = options["plotoptions"]["plotfonts"]
    cmap = colorbarMultiline()
    fig = plt.figure(figsize=options["plotoptions"]["figsize"])
    for iW in windows:
        if iW >= numWindows:
            break
        color = cmap(iW / numWindows)
        winData = specReader.readBinaryWindowLocal(iW)
        winData.view(
            fig=fig,
            chans=dataChans,
            label="{} to {}".format(
                winData.startTime.strftime("%m-%d %H:%M:%S"),
                winData.stopTime.strftime("%m-%d %H:%M:%S"),
            ),
            plotfonts=plotfonts,
            color=color,
        )

    st = fig.suptitle(
        "Spectra plot, site = {}, meas = {}, fs = {:.2f} [Hz], decimation level = {:2d}"
        .format(site, meas, sampleFreqDec, options["declevel"]),
        fontsize=plotfonts["suptitle"],
    )
    st.set_y(0.98)

    # put on axis labels etc
    for idx, chan in enumerate(dataChans):
        ax = plt.subplot(numChans, 1, idx + 1)
        plt.title("Amplitude {}".format(chan), fontsize=plotfonts["title"])
        if len(options["plotoptions"]["amplim"]) == 2:
            ax.set_ylim(options["plotoptions"]["amplim"])
        ax.set_xlim(0, specReader.getSampleFreq() / 2.0)
        plt.grid(True)

    # fig legend and formatting
    ax = plt.gca()
    h, l = ax.get_legend_handles_labels()
    fig.tight_layout(rect=[0.02, 0.02, 0.77, 0.92])
    # legend axis
    legax = plt.axes(position=[0.77, 0.02, 0.23, 0.88], in_layout=False)
    plt.tick_params(left=False,
                    labelleft=False,
                    bottom=False,
                    labelbottom="False")
    plt.box(False)
    legax.legend(h, l, loc="upper left", fontsize=plotfonts["legend"])

    # plot show and save
    if options["save"]:
        impath = projData.imagePath
        filename = "spectraData_{}_{}_dec{}_{}".format(site, meas,
                                                       options["declevel"],
                                                       options["specdir"])
        savename = savePlot(impath, filename, fig)
        projectText("Image saved to file {}".format(savename))
    if options["show"]:
        plt.show(block=options["plotoptions"]["block"])
    if not options["show"] and options["save"]:
        plt.close(fig)
        return None
    return fig
Esempio n. 9
0
def viewStatisticDensityplot(
    projData: ProjectData,
    site: str,
    sampleFreq: Union[int, float],
    stat: str,
    crossplots: List[List[str]],
    **kwargs
) -> Union[Figure, None]:
    """View statistic data as a density plot for a single sampling frequency of a site
    
    Parameters
    ----------
    projData : ProjectData
        A project instance
    site : str
        The site for which to plot statistics
    stat : str
        The statistic to plot
    sampleFreq : float
        The sampling frequency for which to plot statistics
    crossplots : List[List[str]]
        The statistic element pairs to crossplot
    declevel : int
        The decimation level to plot
    eFreqI : int
        The evaluation frequency index
    specdir : str
        The spectra directory
    maskname : str
        Mask name         
    xlim : List, optional
        Limits for the x axis
    ylim : List, optional
        Limits for the y axis
    maxcols : int
        The maximum number of columns in the plots        
    show : bool, optional
        Show the spectra plot
    save : bool, optional
        Save the plot to the images directory
    plotoptions : Dict, optional
        Dictionary of plot options    

    Returns
    -------
    matplotlib.pyplot.figure or None
        A matplotlib figure unless the plot is not shown and is saved, in which case None and the figure is closed. If no data was found, None.
    """
    from resistics.common.plot import (
        savePlot,
        plotOptionsSpec,
        getPlotRowsAndCols,
        colorbar2dSpectra,
    )

    options = {}
    options["declevel"] = 0
    options["eFreqI"] = 0
    options["specdir"] = projData.config.configParams["Spectra"]["specdir"]
    options["maskname"] = ""
    options["xlim"] = []
    options["ylim"] = []
    options["maxcols"] = 2
    options["show"] = True
    options["save"] = False
    options["plotoptions"] = plotOptionsSpec()
    options = parseKeywords(options, kwargs)

    projectText(
        "Plotting density plot for statistic {}, site {} and sampling frequency {}".format(
            stat, site, sampleFreq
        )
    )

    statData = getStatisticDataForSampleFreq(
        projData,
        site,
        sampleFreq,
        stat,
        declevel=options["declevel"],
        specdir=options["specdir"],
    )
    statMeas = list(statData.keys())
    if len(statMeas) == 0:
        projectWarning(
            "No statistic files for site {}, sampling frequency {}, statistic {} and decimation level {}".format(
                site, sampleFreq, stat, options["declevel"]
            )
        )
        return None
    # get the evaluation frequency
    eFreq = statData[statMeas[0]].evalFreq[options["eFreqI"]]

    # get the mask data
    maskWindows = []
    if options["maskname"] != "":
        maskData = getMaskData(projData, site, options["maskname"], sampleFreq)
        maskWindows = maskData.getMaskWindowsFreq(
            options["declevel"], options["eFreqI"]
        )

    # plot information
    nrows, ncols = getPlotRowsAndCols(options["maxcols"], len(crossplots))

    plotfonts = options["plotoptions"]["plotfonts"]
    fig = plt.figure(figsize=options["plotoptions"]["figsize"])
    # suptitle
    st = fig.suptitle(
        "{} density plots for {}, sampling frequency {} Hz,\ndecimation level {} and evaluation frequency {} Hz".format(
            stat, site, sampleFreq, options["declevel"], eFreq
        ),
        fontsize=plotfonts["suptitle"],
    )
    st.set_y(0.98)

    # now plot the data
    for idx, cplot in enumerate(crossplots):
        ax = plt.subplot(nrows, ncols, idx + 1)
        plt.title("Crossplot {}".format(cplot), fontsize=plotfonts["title"])

        plotAll1 = []
        plotAll2 = []
        for meas in statMeas:
            stats = statData[meas].getStats(maskwindows=maskWindows)
            plotI1 = statData[meas].winStats.index(cplot[0])
            plotData1 = np.squeeze(stats[:, options["eFreqI"], plotI1])
            plotI2 = statData[meas].winStats.index(cplot[1])
            plotData2 = np.squeeze(stats[:, options["eFreqI"], plotI2])
            # add to all data
            if plotData1.size == 0:
                continue
            if plotData1.size == 1:
                plotAll1 = plotAll1 + [float(plotData1)]
                plotAll2 = plotAll2 + [float(plotData2)]
            else:
                plotAll1 = plotAll1 + plotData1.tolist()
                plotAll2 = plotAll2 + plotData2.tolist()

        plotAll1 = np.array(plotAll1)
        plotAll2 = np.array(plotAll2)

        nbins = 200
        if len(options["xlim"]) > 0:
            plt.xlim(options["xlim"])
            rangex = options["xlim"]
        else:
            minx = np.percentile(plotAll1, 2)
            maxx = np.percentile(plotAll1, 98)
            ax.set_xlim(minx, maxx)
            rangex = [minx, maxx]

        if len(options["ylim"]) > 0:
            plt.ylim(options["ylim"])
            rangey = options["ylim"]
        else:
            miny = np.percentile(plotAll2, 2)
            maxy = np.percentile(plotAll2, 98)
            ax.set_ylim(miny, maxy)
            rangey = [miny, maxy]

        plt.hist2d(
            plotAll1,
            plotAll2,
            bins=(nbins, nbins),
            range=[rangex, rangey],
            cmap=plt.cm.inferno,
        )

        # axis format
        plt.xlabel(cplot[0], fontsize=plotfonts["axisLabel"])
        plt.ylabel(cplot[1], fontsize=plotfonts["axisLabel"])
        plt.grid(True)
        # set tick sizes
        for label in ax.get_xticklabels() + ax.get_yticklabels():
            label.set_fontsize(plotfonts["axisTicks"])

    # plot format, show and save
    # fig.tight_layout(rect=[0.02, 0.02, 0.98, 0.92])
    if options["save"]:
        impath = projData.imagePath
        sampleFreqStr = fileFormatSampleFreq(sampleFreq)
        filename = "statDensityplot_{:s}_{:s}_{:s}_dec{:d}_efreq{:d}_{:s}".format(
            stat,
            site,
            sampleFreqStr,
            options["declevel"],
            options["eFreqI"],
            options["specdir"],
        )
        if options["maskname"] != "":
            filename = "{}_{}".format(filename, options["maskname"])
        savename = savePlot(impath, filename, fig)
        projectText("Image saved to file {}".format(savename))
    if options["show"]:
        plt.show(block=options["plotoptions"]["block"])
    if not options["show"] and options["save"]:
        plt.close(fig)
        return None
    return fig
Esempio n. 10
0
def processSite(projData: ProjectData, site: str,
                sampleFreq: Union[int, float], **kwargs):
    """Process a single sampling frequency for a site

    The site passed is assumed to be the output site (the output channels will come from this site). If channels from a different site are desired to be used as the input channels, this can be done by specifying the optional inputsite argument.

    .. todo:: 
    
        Give a few different examples here

    Parameters
    ----------
    projData : ProjectData
        The project data instance for the project
    site : str
        Site to process 
    sampleFreq : float, int
        Sample frequency to process
    specdir : str, optional
        The spectra directories to use
    inchans : List[str], optional
        Channels to use as the input of the linear system
    inputsite : str, optional
        Site from which to take the input channels. The default is to use input and output channels from the same site
    outchans : List[str], optional
        Channels to use as the output of the linear system
    remotesite : str, optional
        The site to use as the remote site
    remotechans : List[str], optional
        Channels to use from the remote reference site
    crosschannels : List[str], optional
        List of channels to use for cross powers
    masks : Dict, optional
        Masks dictionary for passing mask data. The key should be a site name and the value should either be a string for a single mask or a list of multiple masks.
    datetimes : List, optional
        List of datetime constraints, each one as a dictionary. For example [{"type": "datetime", "start": 2018-08-08 00:00:00, "end": 2018-08-08 16:00:00, "levels": [0,1]}]. Note that levels is optional.
    postpend : str, optional
        String to postpend to the transfer function output
    ncores : int, optional
        The number of cores to run the transfer function calculations on
    """
    from resistics.decimate.decimator import Decimator
    from resistics.window.selector import WindowSelector
    from resistics.project.shortcuts import (
        getDecimationParameters,
        getWindowParameters,
        getWindowSelector,
        getLocalRegressor,
        getRemoteRegressor,
    )

    options = {}
    options["specdir"] = projData.config.configParams["Spectra"]["specdir"]
    options["inchans"] = ["Hx", "Hy"]
    options["inputsite"] = ""
    options["outchans"] = ["Ex", "Ey"]
    options["remotesite"] = ""
    options["remotechans"] = options["inchans"]
    options["crosschannels"] = []
    options["masks"] = {}
    options["datetimes"] = []
    options["postpend"] = ""
    options["ncores"] = projData.config.getSolverCores()
    options = parseKeywords(options, kwargs)
    if options["inputsite"] == "":
        options["inputsite"] = site

    projectText("Processing site {}, sampling frequency {}".format(
        site, sampleFreq))
    siteData = projData.getSiteData(site)

    # define decimation parameters
    decParams = getDecimationParameters(sampleFreq, projData.config)
    decParams.printInfo()
    winParams = getWindowParameters(decParams, projData.config)
    # window selector
    winSelector = getWindowSelector(projData, decParams, winParams,
                                    options["specdir"])

    # if two sites are duplicated (e.g. input site and output site), winSelector only uses distinct sites. Hence using site and inputSite is no problem even if they are the same
    processSites = []
    if options["remotesite"]:
        processSites = [site, options["inputsite"], options["remotesite"]]
        winSelector.setSites(processSites)
    else:
        # if no remote site, then single site processing
        processSites = [site, options["inputsite"]]
        winSelector.setSites(processSites)

    # add window masks
    if len(list(options["masks"].keys())) > 0:
        for maskSite in options["masks"]:
            if maskSite not in processSites:
                # there is a site in the masks dictionary which is of no interest
                continue
            if isinstance(options["masks"][maskSite], str):
                # a single mask
                winSelector.addWindowMask(maskSite, options["masks"][maskSite])
                continue
            if all(
                    isinstance(item, str)
                    for item in options["masks"][maskSite]):
                # list of masks for the site
                for mask in options["masks"][maskSite]:
                    winSelector.addWindowMask(maskSite, mask)

    # add datetime constraints
    for dC in options["datetimes"]:
        levels = None
        if "levels" in dC:
            levels = dC["levels"]

        if dC["type"] == "datetime":
            winSelector.addDatetimeConstraint(dC["start"], dC["stop"], levels)
        if dC["type"] == "time":
            winSelector.addTimeConstraint(dC["start"], dC["stop"], levels)
        if dC["type"] == "date":
            winSelector.addDateConstraint(dC["date"], levels)

    # calculate the shared windows and print info
    winSelector.calcSharedWindows()
    winSelector.printInfo()
    winSelector.printDatetimeConstraints()
    winSelector.printWindowMasks()
    winSelector.printSharedWindows()
    winSelector.printWindowsForFrequency()

    # now have the windows, pass the winSelector to processors
    outPath = siteData.transFuncPath
    if options["remotesite"]:
        projectText(
            "Remote reference processing with sites: in = {}, out = {}, reference = {}"
            .format(options["inputsite"], site, options["remotesite"]))
        processor = getRemoteRegressor(winSelector, outPath, projData.config)
        processor.setRemote(options["remotesite"], options["remotechans"])
    else:
        projectText(
            "Single site processing with sites: in = {}, out = {}".format(
                options["inputsite"], site))
        processor = getLocalRegressor(winSelector, outPath, projData.config)

    # add the input and output site
    processor.setCores(options["ncores"])
    processor.setInput(options["inputsite"], options["inchans"])
    processor.setOutput(site, options["outchans"])
    if len(options["crosschannels"]) > 0:
        processor.crossChannels = options["crosschannels"]
    processor.postpend = options["postpend"]
    processor.printInfo()
    projectText("Processing data using {} cores".format(options["ncores"]))
    processor.process()
Esempio n. 11
0
def viewStatistic(
    projData: ProjectData, site: str, sampleFreq: Union[int, float], stat: str, **kwargs
) -> Union[Figure, None]:
    """View statistic data for a single sampling frequency of a site
    
    Parameters
    ----------
    projData : ProjectData
        A project instance
    site : str
        The site for which to plot statistics
    stat : str
        The statistic to plot
    sampleFreq : float
        The sampling frequency for which to plot statistics
    declevel : int
        The decimation level to plot
    eFreqI : int
        The evaluation frequency index
    specdir : str
        The spectra directory
    maskname : str
        Mask name         
    clim : List, optional
        Limits for colourbar axis
    xlim : List, optional
        Limits for the x axis
    ylim : List, optional
        Limits for the y axis
    colortitle : str, optional
        Title for the colourbar
    show : bool, optional
        Show the spectra plot
    save : bool, optional
        Save the plot to the images directory
    plotoptions : Dict, optional
        Dictionary of plot options    

    Returns
    -------
    matplotlib.pyplot.figure or None
        A matplotlib figure unless the plot is not shown and is saved, in which case None and the figure is closed. If no data was found, None.
    """
    from resistics.common.plot import savePlot, plotOptionsSpec, getPlotRowsAndCols

    options = {}
    options["declevel"] = 0
    options["eFreqI"] = 0
    options["specdir"] = projData.config.configParams["Spectra"]["specdir"]
    options["maskname"] = ""
    options["clim"] = []
    options["xlim"] = []
    options["ylim"] = []
    options["colortitle"] = ""
    options["show"] = True
    options["save"] = False
    options["plotoptions"] = plotOptionsSpec()
    options = parseKeywords(options, kwargs)

    projectText(
        "Plotting statistic {} for site {} and sampling frequency {}".format(
            stat, site, sampleFreq
        )
    )
    statData = getStatisticDataForSampleFreq(
        projData,
        site,
        sampleFreq,
        stat,
        declevel=options["declevel"],
        specdir=options["specdir"],
    )
    statMeas = list(statData.keys())
    if len(statMeas) == 0:
        projectWarning(
            "No statistic files for site {}, sampling frequency {}, statistic {} and decimation level {}".format(
                site, sampleFreq, stat, options["declevel"]
            )
        )
        return None
    # get the evaluation frequency
    eFreq = statData[statMeas[0]].evalFreq[options["eFreqI"]]

    # get the mask data
    maskWindows = []
    if options["maskname"] != "":
        maskData = getMaskData(projData, site, options["maskname"], sampleFreq)
        maskWindows = maskData.getMaskWindowsFreq(
            options["declevel"], options["eFreqI"]
        )

    # setup the figure
    plotfonts = options["plotoptions"]["plotfonts"]
    fig = plt.figure(figsize=options["plotoptions"]["figsize"])

    # get the date limits
    siteData = projData.getSiteData(site)
    if len(options["xlim"]) == 0:
        start = siteData.getMeasurementStart(statMeas[0])
        end = siteData.getMeasurementEnd(statMeas[0])
        for meas in statMeas:
            start = min(start, siteData.getMeasurementStart(meas))
            end = max(end, siteData.getMeasurementEnd(meas))
        options["xlim"] = [start, end]

    # do the plots
    for meas in statMeas:
        statData[meas].view(
            options["eFreqI"],
            fig=fig,
            xlim=options["xlim"],
            ylim=options["ylim"],
            clim=options["clim"],
            label=meas,
            plotfonts=options["plotoptions"]["plotfonts"],
            maskwindows=maskWindows,
        )
    # add a legened
    plt.legend(markerscale=4, fontsize=plotfonts["legend"])

    # do the title after all the plots
    fig.suptitle(
        "{} values for {}, sampling frequency = {:.2f} Hz, decimation level = {} and evaluation frequency {} Hz".format(
            stat, site, sampleFreq, options["declevel"], eFreq
        ),
        fontsize=plotfonts["suptitle"],
    )

    # plot format, show and save
    fig.tight_layout(rect=[0.02, 0.02, 0.98, 0.92])
    if options["save"]:
        impath = projData.imagePath
        sampleFreqStr = fileFormatSampleFreq(sampleFreq)
        filename = "stat_{:s}_{:s}_{:s}_dec{:d}_efreq{:d}_{:s}".format(
            stat,
            site,
            sampleFreqStr,
            options["declevel"],
            options["eFreqI"],
            options["specdir"],
        )
        if options["maskname"] != "":
            filename = "{}_{}".format(filename, options["maskname"])
        savename = savePlot(impath, filename, fig)
        projectText("Image saved to file {}".format(savename))
    if options["show"]:
        plt.show(block=options["plotoptions"]["block"])
    if not options["show"] and options["save"]:
        plt.close(fig)
        return None
    return fig
Esempio n. 12
0
def calculateRemoteStatistics(projData: ProjectData, remoteSite: str, **kwargs):
    """Calculate statistics involving a remote reference site

    Parameters
    ----------
    projData : ProjectData
        A project data instance
    remoteSite : str
        The name of the site to use as the remote site
    sites : List[str], optional
        A list of sites to calculate statistics for
    sampleFreqs : List[float], optional
        List of sampling frequencies for which to calculate statistics
    specdir : str, optional
        The spectra directory for which to calculate statistics
    remotestats : List[str], optional
        The statistics to calculate out. Acceptable statistics are: "RR_coherence", "RR_coherenceEqn", "RR_absvalEqn", "RR_transferFunction", "RR_resPhase". Configuration file values are used by default.
    """
    from resistics.statistics.io import StatisticIO
    from resistics.statistics.calculator import StatisticCalculator
    from resistics.project.shortcuts import (
        getDecimationParameters,
        getWindowParameters,
        getWindowSelector,
    )

    options = {}
    options["sites"] = projData.getSites()
    options["sampleFreqs"] = projData.getSampleFreqs()
    options["chans"] = []
    options["specdir"] = projData.config.configParams["Spectra"]["specdir"]
    options["remotestats"] = projData.config.configParams["Statistics"]["remotestats"]
    options["ncores"] = projData.config.getStatisticCores()
    options = parseKeywords(options, kwargs)

    projectText(
        "Calculating stats: {} for sites: {} with remote site {}".format(
            listToString(options["remotestats"]),
            listToString(options["sites"]),
            remoteSite,
        )
    )

    statIO = StatisticIO()
    for site in options["sites"]:
        siteData = projData.getSiteData(site)
        measurements = siteData.getMeasurements()

        for meas in measurements:
            sampleFreq = siteData.getMeasurementSampleFreq(meas)
            if sampleFreq not in options["sampleFreqs"]:
                continue
            projectText(
                "Calculating stats for site {}, measurement {} with reference {}".format(
                    site, meas, remoteSite
                )
            )
            # decimation and window parameters
            decParams = getDecimationParameters(sampleFreq, projData.config)
            numLevels = decParams.numLevels
            winParams = getWindowParameters(decParams, projData.config)
            # create the window selector and find the shared windows
            winSelector = getWindowSelector(projData, decParams, winParams)
            winSelector.setSites([site, remoteSite])
            winSelector.calcSharedWindows()
            # create the spectrum reader
            specReader = SpectrumReader(
                os.path.join(siteData.getMeasurementSpecPath(meas), options["specdir"])
            )

            # calculate statistics for decimation level if spectra file exists
            for declevel in range(0, numLevels):
                check = specReader.openBinaryForReading("spectra", declevel)
                if not check:
                    continue
                # information regarding only this spectra file
                refTime = specReader.getReferenceTime()
                winSize = specReader.getWindowSize()
                winOlap = specReader.getWindowOverlap()
                numWindows = specReader.getNumWindows()
                evalFreq = decParams.getEvalFrequenciesForLevel(declevel)
                sampleFreqDec = specReader.getSampleFreq()
                globalOffset = specReader.getGlobalOffset()

                # find size of the intersection between the windows in this spectra file and the shared windows
                sharedWindows = winSelector.getSharedWindowsLevel(declevel)
                sharedWindowsMeas = sharedWindows.intersection(
                    set(np.arange(globalOffset, globalOffset + numWindows))
                )
                sharedWindowsMeas = sorted(list(sharedWindowsMeas))
                numSharedWindows = len(sharedWindowsMeas)

                statData = {}
                # create the statistic handlers
                for stat in options["remotestats"]:
                    statElements = getStatElements(stat)
                    statData[stat] = StatisticData(
                        stat, refTime, sampleFreqDec, winSize, winOlap
                    )
                    # with remote reference the number of windows is number of shared windows
                    statData[stat].setStatParams(
                        numSharedWindows, statElements, evalFreq
                    )
                    statData[stat].comments = specReader.getComments()
                    statData[stat].addComment(projData.config.getConfigComment())
                    statData[stat].addComment(
                        "Calculating remote statistic: {}".format(stat)
                    )
                    statData[stat].addComment(
                        "Statistic components: {}".format(listToString(statElements))
                    )

                # collect the spectra data
                spectraData, _globalIndices = specReader.readBinaryBatchGlobal(
                    sharedWindowsMeas
                )
                remoteData = []
                for globalWindow in sharedWindowsMeas:
                    _, remoteReader = winSelector.getSpecReaderForWindow(
                        remoteSite, declevel, globalWindow
                    )
                    remoteData.append(remoteReader.readBinaryWindowGlobal(globalWindow))

                # calculate
                if options["ncores"] > 0:
                    out = multiStatistics(
                        options["ncores"],
                        spectraData,
                        evalFreq,
                        options["remotestats"],
                        remoteData=remoteData,
                    )
                    for iW, globalWindow in enumerate(sharedWindowsMeas):
                        for stat in options["remotestats"]:
                            statData[stat].addStat(iW, globalWindow, out[iW][stat])
                else:
                    statCalculator = StatisticCalculator()
                    for iW, globalWindow in enumerate(sharedWindowsMeas):
                        winStatData = calculateWindowStatistics(
                            spectraData[iW],
                            evalFreq,
                            options["remotestats"],
                            remoteSpecData=remoteData[iW],
                            statCalculator=statCalculator,
                        )
                        for stat in options["remotestats"]:
                            statData[stat].addStat(iW, globalWindow, winStatData[stat])

                # save statistic
                for stat in options["remotestats"]:
                    statIO.setDatapath(
                        os.path.join(
                            siteData.getMeasurementStatPath(meas), options["specdir"]
                        )
                    )
                    statIO.write(statData[stat], declevel)
Esempio n. 13
0
def calculateStatistics(projData: ProjectData, **kwargs):
    """Calculate statistics for sites
    
    Parameters
    ----------
    projData : ProjectData
        A project data instance
    sites : List[str], optional
        A list of sites to calculate statistics for
    sampleFreqs : List[float], optional
        List of sampling frequencies for which to calculate statistics
    specdir : str, optional
        The spectra directory for which to calculate statistics
    stats : List[str], optional
        The statistics to calculate out. Acceptable values are: "absvalEqn" "coherence", "psd", "poldir", "transFunc", "resPhase", "partialcoh". Configuration file values are used by default.
    ncores : int, optional
        The number of cores to run the transfer function calculations on        
    """
    from resistics.statistics.io import StatisticIO
    from resistics.project.shortcuts import getDecimationParameters

    options = {}
    options["sites"] = projData.getSites()
    options["sampleFreqs"] = projData.getSampleFreqs()
    options["chans"] = []
    options["specdir"] = projData.config.configParams["Spectra"]["specdir"]
    options["stats"] = projData.config.configParams["Statistics"]["stats"]
    options["ncores"] = projData.config.getStatisticCores()
    options = parseKeywords(options, kwargs)

    projectText(
        "Calculating stats: {} for sites: {}".format(
            listToString(options["stats"]), listToString(options["sites"])
        )
    )
    # loop through sites and calculate statistics
    statIO = StatisticIO()
    for site in options["sites"]:
        siteData = projData.getSiteData(site)
        measurements = siteData.getMeasurements()

        for meas in measurements:
            sampleFreq = siteData.getMeasurementSampleFreq(meas)
            if sampleFreq not in options["sampleFreqs"]:
                continue
            projectText(
                "Calculating stats for site {}, measurement {}".format(site, meas)
            )
            decParams = getDecimationParameters(sampleFreq, projData.config)
            numLevels = decParams.numLevels
            specReader = SpectrumReader(
                os.path.join(siteData.getMeasurementSpecPath(meas), options["specdir"])
            )

            # calculate statistics for decimation level if spectra file exists
            for declevel in range(0, numLevels):
                check = specReader.openBinaryForReading("spectra", declevel)
                if not check:
                    continue
                refTime = specReader.getReferenceTime()
                winSize = specReader.getWindowSize()
                winOlap = specReader.getWindowOverlap()
                numWindows = specReader.getNumWindows()
                sampleFreqDec = specReader.getSampleFreq()
                evalFreq = decParams.getEvalFrequenciesForLevel(declevel)

                # dictionary for saving statistic data
                statData = {}
                for stat in options["stats"]:
                    statElements = getStatElements(stat)
                    statData[stat] = StatisticData(
                        stat, refTime, sampleFreqDec, winSize, winOlap
                    )
                    statData[stat].setStatParams(numWindows, statElements, evalFreq)
                    statData[stat].comments = specReader.getComments()
                    statData[stat].addComment(projData.config.getConfigComment())
                    statData[stat].addComment("Calculating statistic: {}".format(stat))
                    statData[stat].addComment(
                        "Statistic components: {}".format(listToString(statElements))
                    )
                # get all the spectra data in batch and process all the windows
                spectraData, globalIndices = specReader.readBinaryBatchGlobal()
                if options["ncores"] > 0:
                    out = multiStatistics(
                        options["ncores"], spectraData, evalFreq, options["stats"]
                    )
                    for iW in range(numWindows):
                        for stat in options["stats"]:
                            statData[stat].addStat(iW, globalIndices[iW], out[iW][stat])
                else:
                    statCalculator = StatisticCalculator()
                    for iW in range(numWindows):
                        winSpecData = spectraData[iW]
                        winStatData = calculateWindowStatistics(
                            winSpecData,
                            evalFreq,
                            options["stats"],
                            statCalculator=statCalculator,
                        )
                        for stat in options["stats"]:
                            statData[stat].addStat(
                                iW, globalIndices[iW], winStatData[stat]
                            )
                specReader.closeFile()

                # save statistic
                for stat in options["stats"]:
                    statIO.setDatapath(
                        os.path.join(
                            siteData.getMeasurementStatPath(meas), options["specdir"]
                        )
                    )
                    statIO.write(statData[stat], declevel)
Esempio n. 14
0
def viewTipper(projData: ProjectData, **kwargs) -> List[Figure]:
    """View transfer function data

    Parameters
    ----------
    projData : projecData
        The project data
    sites : List[str], optional
        List of sites to plot transfer functions for
    sampleFreqs : List[float], optional 
        List of samples frequencies for which to plot transfer functions
    specdir : str, optional
        The spectra directories used
    postpend : str, optional
        The postpend on the transfer function files
    cols : bool, optional
        Boolean flag, True to arrange tipper plot as 1 row with 3 columns
    show : bool, optional
        Show the spectra plot
    save : bool, optional
        Save the plot to the images directory
    plotoptions : Dict
        A dictionary of plot options. For example, set the resistivity y limits using res_ylim, set the phase y limits using phase_ylim and set the xlimits using xlim
    """
    from resistics.common.plot import (
        savePlot,
        plotOptionsTipper,
        getTransferFunctionFigSize,
        transferFunctionColours,
    )

    options = {}
    options["sites"] = projData.getSites()
    options["sampleFreqs"] = projData.getSampleFreqs()
    options["specdir"] = projData.config.configParams["Spectra"]["specdir"]
    options["postpend"] = ""
    options["cols"] = True
    options["save"] = False
    options["show"] = True
    options["plotoptions"] = plotOptionsTipper()
    options = parseKeywords(options, kwargs)

    # loop over sites
    figs = []
    for site in options["sites"]:
        siteData = projData.getSiteData(site)
        sampleFreqs = set(siteData.getSampleFreqs())
        # find the intersection with the options["freqs"]
        sampleFreqs = sampleFreqs.intersection(options["sampleFreqs"])
        sampleFreqs = sorted(list(sampleFreqs))

        # if prepend is a string, then make it a list
        if isinstance(options["postpend"], str):
            options["postpend"] = [options["postpend"]]

        plotfonts = options["plotoptions"]["plotfonts"]
        # now loop over the postpend options
        for pp in options["postpend"]:
            # add an underscore if not empty
            postpend = "_{}".format(pp) if pp != "" else pp

            fig = plt.figure(figsize=options["plotoptions"]["figsize"])
            mks = ["o", "*", "d", "^", "h"]
            lstyles = ["solid", "dashed", "dashdot", "dotted"]

            # loop over sampling frequencies
            includedFreqs = []
            for idx, sampleFreq in enumerate(sampleFreqs):

                tfData = getTransferFunctionData(projData,
                                                 site,
                                                 sampleFreq,
                                                 specdir=options["specdir"],
                                                 postpend=pp)
                if not tfData:
                    continue

                includedFreqs.append(sampleFreq)
                projectText(
                    "Plotting tipper for site {}, sample frequency {}".format(
                        site, sampleFreq))

                mk = mks[idx % len(mks)]
                ls = lstyles[idx % len(lstyles)]
                tfData.viewTipper(
                    fig=fig,
                    rows=options["cols"],
                    mk=mk,
                    ls=ls,
                    label="{}".format(sampleFreq),
                    xlim=options["plotoptions"]["xlim"],
                    length_ylim=options["plotoptions"]["length_ylim"],
                    angle_ylim=options["plotoptions"]["angle_ylim"],
                    plotfonts=options["plotoptions"]["plotfonts"],
                )

            # check if any files found
            if len(includedFreqs) == 0:
                continue

            # sup title
            sub = "Site {} tipper: {}".format(site,
                                              options["specdir"] + postpend)
            sub = "{}\nfs = {}".format(
                sub, arrayToString(includedFreqs, decimals=3))
            st = fig.suptitle(sub, fontsize=plotfonts["suptitle"])
            st.set_y(0.99)
            fig.tight_layout()
            fig.subplots_adjust(top=0.85)
            figs.append(fig)

            if options["save"]:
                impath = projData.imagePath
                filename = "tipper_{}_{}{}".format(site, options["specdir"],
                                                   postpend)
                savename = savePlot(impath, filename, fig)
                projectText("Image saved to file {}".format(savename))

        if not options["show"]:
            plt.close("all")
        else:
            plt.show(block=options["plotoptions"]["block"])
    return figs
Esempio n. 15
0
def viewTime(projData: ProjectData, startDate: str, endDate: str,
             **kwargs) -> Union[Figure, None]:
    """View timeseries in the project

    Parameters
    ----------
    projData : ProjectData
        The project data instance
    startDate : str
        The start of the data range to plot
    endDate : str
        The end of the date range to plot
    sites : List[str], optional
        List of sites 
    sampleFreqs : List[float], optional
        List of sample frequencies to plot
    chans : List[str], optional
        List of channels to plot
    polreverse :  Dict[str, bool]
        Keys are channels and values are boolean flags for reversing   
    scale : Dict[str, float]
        Keys are channels and values are floats to multiply the channel data by   
    calibrate : bool, optional
        Boolean flag to calibrate data
    normalise : bool, optional
        Boolean flag to normalise the data. Default is False and setting to True will normalise each channel independently.
    notch : List[float], optional
        List of frequencies to notch out
    filter : Dict, optional
        Filter parameters
    show : bool, optional
        Boolean flag to show the plot
    save : bool, optional
        Boolean flag to save the plot to images folder
    plotoptions : Dict
        Dictionary of plot options

    Returns
    -------
    matplotlib.pyplot.figure or None
        A matplotlib figure unless the plot is not shown and is saved, in which case None and the figure is closed.
    """
    from resistics.project.shortcuts import getCalibrator
    from resistics.project.preprocess import (
        applyPolarisationReversalOptions,
        applyScaleOptions,
        applyCalibrationOptions,
        applyFilterOptions,
        applyNormaliseOptions,
        applyNotchOptions,
    )
    from resistics.common.plot import savePlot, plotOptionsTime

    options = {}
    options["sites"]: List[str] = projData.sites
    options["sampleFreqs"]: Union[List[float],
                                  List[str]] = projData.getSampleFreqs()
    options["chans"]: List[str] = ["Ex", "Ey", "Hx", "Hy", "Hz"]
    options["polreverse"]: Union[bool, Dict[str, bool]] = False
    options["scale"]: Union[bool, Dict[str, float]] = False
    options["calibrate"]: bool = False
    options["normalise"]: bool = False
    options["filter"]: Dict = {}
    options["notch"]: List[float] = []
    options["show"]: bool = True
    options["save"]: bool = False
    options["plotoptions"]: Dict = plotOptionsTime()
    options = parseKeywords(options, kwargs)

    # prepare calibrator
    cal = getCalibrator(projData.calPath, projData.config)
    if options["calibrate"]:
        cal.printInfo()

    # format startDate and endDate
    start = datetime.strptime("{}.000".format(startDate),
                              "%Y-%m-%d %H:%M:%S.%f")
    stop = datetime.strptime("{}.000".format(endDate), "%Y-%m-%d %H:%M:%S.%f")
    # collect relevant data - dictionary to store timeData
    timeDataAll = {}
    for site in options["sites"]:
        siteData = projData.getSiteData(site)
        if isinstance(siteData, bool):
            # site does not exist
            continue
        siteData.printInfo()
        measurements = siteData.getMeasurements()
        timeDataAll[site] = {}

        # loop over measurements and save data for each one
        for meas in measurements:
            sampleFreq = siteData.getMeasurementSampleFreq(meas)
            if sampleFreq not in options["sampleFreqs"]:
                continue

            # check if data contributes to user defined time period
            siteStart = siteData.getMeasurementStart(meas)
            siteStop = siteData.getMeasurementEnd(meas)
            if siteStop < start or siteStart > stop:
                continue

            reader = siteData.getMeasurement(meas)
            # get the samples of the datetimes
            sampleStart, sampleStop = reader.time2sample(start, stop)
            # as the samples returned from time2sample are rounded use sample2time to get the appropriate start and end times for those samples
            readStart, readStop = reader.sample2time(sampleStart, sampleStop)
            # get the data for any available channels meaning even those sites with missing channels can be plotted
            timeData = reader.getPhysicalData(readStart, readStop)

            projectText(
                "Plotting measurement {} of site {} between {} and {}".format(
                    meas, site, readStart, readStop))

            # apply various options
            applyPolarisationReversalOptions(options, timeData)
            applyScaleOptions(options, timeData)
            applyCalibrationOptions(options, cal, timeData, reader)
            applyFilterOptions(options, timeData)
            applyNotchOptions(options, timeData)
            applyNormaliseOptions(options, timeData)
            timeDataAll[site][meas] = timeData

    # plot all the data
    plotfonts = options["plotoptions"]["plotfonts"]
    fig = plt.figure(figsize=options["plotoptions"]["figsize"])
    for site in timeDataAll:
        for meas in timeDataAll[site]:
            timeData = timeDataAll[site][meas]
            timeData.view(
                sampleStop=timeDataAll[site][meas].numSamples - 1,
                fig=fig,
                chans=options["chans"],
                label="{} - {}".format(site, meas),
                xlim=[start, stop],
                plotfonts=plotfonts,
            )

    # add the suptitle
    st = fig.suptitle(
        "Time data from {} to {}".format(start.strftime("%Y-%m-%d %H-%M-%S"),
                                         stop.strftime("%Y-%m-%d %H-%M-%S")),
        fontsize=plotfonts["suptitle"],
    )
    st.set_y(0.98)

    # do the axis labels
    numChans = len(options["chans"])
    for idx, chan in enumerate(options["chans"]):
        plt.subplot(numChans, 1, idx + 1)
        # do the yaxis
        if isElectric(chan):
            plt.ylabel("mV/km", fontsize=plotfonts["axisLabel"])
            if len(options["plotoptions"]["Eylim"]) > 0:
                plt.ylim(options["plotoptions"]["Eylim"])
        else:
            if options["calibrate"]:
                plt.ylabel("nT", fontsize=plotfonts["axisLabel"])
            else:
                plt.ylabel("mV", fontsize=plotfonts["axisLabel"])
            if len(options["plotoptions"]["Hylim"]) > 0:
                plt.ylim(options["plotoptions"]["Hylim"])
        plt.legend(loc=1, fontsize=plotfonts["legend"])

    # plot format
    fig.tight_layout(rect=[0, 0.02, 1, 0.96])
    fig.subplots_adjust(top=0.92)

    # plot show and save
    if options["save"]:
        impath = projData.imagePath
        filename = "timeData_{}_{}".format(
            start.strftime("%Y-%m-%d_%H-%M-%S_"),
            stop.strftime("%Y-%m-%d_%H-%M-%S"))
        savename = savePlot(impath, filename, fig)
        projectText("Image saved to file {}".format(savename))
    if options["show"]:
        plt.show(block=options["plotoptions"]["block"])
    if not options["show"] and options["save"]:
        plt.close(fig)
        return None
    return fig
Esempio n. 16
0
def preProcess(projData: ProjectData, **kwargs) -> None:
    """Pre-process project time data

    Preprocess the time data using filters, notch filters, resampling or interpolation. A new measurement folder is created under the site. The name of the new measurement folder is:
    prepend_[name of input measurement]_postpend. By default, prepend is "proc" and postpend is empty. 

    Processed time series data can be saved in a new site by using the outputsite option.

    Parameters
    ----------
    projData : ProjectData
        A project data object
    sites : str, List[str], optional
        Either a single site or a list of sites
    sampleFreqs : int, float, List[float], optional
        The frequencies to preprocess
    start : str, optional
        Start date of data to preprocess in format "%Y-%m-%d %H:%M:%S"
    stop : str, optional
        Stop date of data to process in format "%Y-%m-%d %H:%M:%S"
    outputsite : str, optional
        A site to output the preprocessed time data to. If this site does not exist, it will be created
    polreverse :  Dict[str, bool]
        Keys are channels and values are boolean flags for reversing 
    scale : Dict[str, float]
        Keys are channels and values are floats to multiply the channel data by   
    calibrate : bool, optional
        Boolean flag for calibrating the data. Default is false and setting to True will calibrate where files can be found.
    normalise : bool, optional
        Boolean flag for normalising the data. Default is False and setting to True will normalise each channel independently.
    filter : Dict, optional
        Filtering options in a dictionary
    notch : List[float], optional
        List of frequencies to notch in spectra given as a list of floats
    resamp : Dict, optional
        Resampling parameters in a dictionary with entries in the format: {sampleRateFrom: sampleRateTo}. All measurement directories of sampleRateFrom will be resampled to sampleRateTo
    interp : bool, optional
        Boolean flag for interpolating the data on to the second, so that sampling is coincident with seconds. This is not always the case. For example, SPAM data is not necessarily sampled on the second, whereas ATS data is. This function is useful when combining data of multiple formats. Interpolation does not change the sampling rate. Default is False.
    prepend : str, optional
        String to prepend to the output folder. Default is "proc".
    postpend : str, optional
        String to postpend to the output folder. Default is empty.
    """
    from resistics.project.shortcuts import getCalibrator
    from resistics.project.preprocess import (
        applyPolarisationReversalOptions,
        applyScaleOptions,
        applyCalibrationOptions,
        applyFilterOptions,
        applyInterpolationOptions,
        applyNormaliseOptions,
        applyNotchOptions,
        applyResampleOptions,
    )

    options: Dict = {}
    options["sites"]: List = projData.getSites()
    options["sampleFreqs"]: List[float] = projData.getSampleFreqs()
    options["start"]: Union[bool, str] = False
    options["stop"]: Union[bool, str] = False
    options["outputsite"]: str = ""
    options["polreverse"]: Union[bool, Dict[str, bool]] = False
    options["scale"]: Union[bool, Dict[str, float]] = False
    options["calibrate"]: bool = False
    options["normalise"]: bool = False
    options["filter"]: Dict = {}
    options["notch"]: List[float] = []
    options["resamp"]: Dict = {}
    options["interp"]: bool = False
    options["prepend"]: str = "proc"
    options["postpend"]: str = ""
    options = parseKeywords(options, kwargs)

    # print info
    text: List = ["Processing with options"]
    for op, val in options.items():
        text.append("\t{} = {}".format(op, val))
    projectBlock(text)

    if isinstance(options["sites"], str):
        options["sites"] = [options["sites"]]

    # outputting to another site
    if options["outputsite"] != "":
        projectText("Preprocessed data will be saved to output site {}".format(
            options["outputsite"]))
        # create the site
        projData.createSite(options["outputsite"])
        projData.refresh()
        outputSitePath = projData.getSiteData(options["outputsite"]).timePath

    # output naming
    outPre = options["prepend"] + "_" if options["prepend"] != "" else ""
    outPost = "_" + options["postpend"] if options["postpend"] != "" else ""
    if outPre == "" and outPost == "" and options["outputsite"] == "":
        outPre = "proc_"

    # create a data calibrator writer instance
    cal = getCalibrator(projData.calPath, projData.config)
    if options["calibrate"]:
        cal.printInfo()
    writer = TimeWriterInternal()

    # format dates
    if options["start"]:
        options["start"] = datetime.strptime(options["start"],
                                             "%Y-%m-%d %H:%M:%S")
    if options["stop"]:
        options["stop"] = datetime.strptime(options["stop"],
                                            "%Y-%m-%d %H:%M:%S")

    for site in options["sites"]:
        siteData = projData.getSiteData(site)
        siteData.printInfo()
        # loop over frequencies
        for sampleFreq in options["sampleFreqs"]:
            measurements = siteData.getMeasurements(sampleFreq)
            if len(measurements) == 0:
                # no data files at this sample rate
                continue

            # otherwise, process
            for meas in measurements:
                # get the reader
                projectText("Processing site {}, measurement {}".format(
                    site, meas))
                reader = siteData.getMeasurement(meas)
                startTime = reader.getStartDatetime()
                stopTime = reader.getStopDatetime()
                if (options["start"]
                        or options["stop"]) and not checkDateOptions(
                            options, startTime, stopTime):
                    continue
                # if the data contributes, copy in the data if relevant
                if options["start"]:
                    startTime = options["start"]
                if options["stop"]:
                    stopTime = options["stop"]

                # calculate the samples
                sampleStart, sampleEnd = reader.time2sample(
                    startTime, stopTime)
                # now get the data
                timeData = reader.getPhysicalSamples(startSample=sampleStart,
                                                     endSample=sampleEnd)
                timeData.printInfo()
                headers = reader.getHeaders()
                chanHeaders, _ = reader.getChanHeaders()

                # apply options
                applyPolarisationReversalOptions(options, timeData)
                applyScaleOptions(options, timeData)
                applyCalibrationOptions(options, cal, timeData, reader)
                applyFilterOptions(options, timeData)
                applyNotchOptions(options, timeData)
                applyInterpolationOptions(options, timeData)
                applyResampleOptions(options, timeData)
                applyNormaliseOptions(options, timeData)

                # output dataset path
                if options["outputsite"] != "":
                    timePath = outputSitePath
                else:
                    timePath = siteData.timePath
                outPath = os.path.join(timePath,
                                       "{}{}{}".format(outPre, meas, outPost))
                # write time data - need to manually change some headers (hence the keywords)
                writer = TimeWriterInternal()
                writer.setOutPath(outPath)
                writer.writeData(
                    headers,
                    chanHeaders,
                    timeData,
                    start_time=timeData.startTime.strftime("%H:%M:%S.%f"),
                    start_date=timeData.startTime.strftime("%Y-%m-%d"),
                    stop_time=timeData.stopTime.strftime("%H:%M:%S.%f"),
                    stop_date=timeData.stopTime.strftime("%Y-%m-%d"),
                    numSamples=timeData.numSamples,
                    sample_freq=timeData.sampleFreq,
                    physical=True,
                )
                writer.printInfo()
Esempio n. 17
0
def viewStatisticHistogram(
    projData: ProjectData, site: str, sampleFreq: float, stat: str, **kwargs
) -> Union[Figure, None]:
    """View statistic histograms for a single sampling frequency of a site
    
    Parameters
    ----------
    projData : ProjectData
        A project instance
    site : str
        The site for which to plot statistics
    stat : str
        The statistic to plot
    sampleFreq : float
        The sampling frequency for which to plot statistics
    declevel : int
        The decimation level to plot
    eFreqI : int
        The evaluation frequency index       
    specdir : str
        The spectra directory        
    maskname : str
        Mask name 
    numbins : int
        The number of bins for the histogram data binning
    xlim : List, optional
        Limits for the x axis
    maxcols : int
        The maximum number of columns in the plots
    show : bool, optional
        Show the spectra plot
    save : bool, optional
        Save the plot to the images directory
    plotoptions : Dict, optional
        Dictionary of plot options    

    Returns
    -------
    matplotlib.pyplot.figure or None
        A matplotlib figure unless the plot is not shown and is saved, in which case None. If no data was found, None.
    """
    from resistics.common.plot import savePlot, plotOptionsSpec, getPlotRowsAndCols

    options = {}
    options["declevel"] = 0
    options["eFreqI"] = 0
    options["specdir"] = projData.config.configParams["Spectra"]["specdir"]
    options["maskname"] = ""
    options["numbins"] = 40
    options["xlim"] = []
    options["maxcols"] = 4
    options["show"] = True
    options["save"] = False
    options["plotoptions"] = plotOptionsSpec()
    options = parseKeywords(options, kwargs)

    projectText(
        "Plotting histogram for statistic {}, site {} and sampling frequency {}".format(
            stat, site, sampleFreq
        )
    )

    statData = getStatisticDataForSampleFreq(
        projData,
        site,
        sampleFreq,
        stat,
        declevel=options["declevel"],
        specdir=options["specdir"],
    )
    statMeas = list(statData.keys())
    if len(statMeas) == 0:
        projectWarning(
            "No statistic files for site {}, sampling frequency {}, statistic {} and decimation level {}".format(
                site, sampleFreq, stat, options["declevel"]
            )
        )
        return None
    # get the statistic components
    statComponents = statData[statMeas[0]].winStats
    # get the evaluation frequency
    eFreq = statData[statMeas[0]].evalFreq[options["eFreqI"]]

    # get the mask data
    maskWindows = []
    if options["maskname"] != "":
        maskData = getMaskData(projData, site, options["maskname"], sampleFreq)
        maskWindows = maskData.getMaskWindowsFreq(
            options["declevel"], options["eFreqI"]
        )

    # plot information
    nrows, ncols = getPlotRowsAndCols(options["maxcols"], len(statComponents))
    numbins = options["numbins"]

    plotfonts = options["plotoptions"]["plotfonts"]
    fig = plt.figure(figsize=options["plotoptions"]["figsize"])
    # suptitle
    st = fig.suptitle(
        "{} histogram for {}, sampling frequency {} Hz, decimation level {} and evaluation frequency {} Hz".format(
            stat, site, sampleFreq, options["declevel"], eFreq
        ),
        fontsize=plotfonts["suptitle"],
    )
    st.set_y(0.98)

    # now plot the data
    for idx, val in enumerate(statComponents):
        ax = plt.subplot(nrows, ncols, idx + 1)
        plt.title("Histogram {}".format(val), fontsize=plotfonts["title"])

        plotData = np.empty(shape=(0))
        for meas in statMeas:
            stats = statData[meas].getStats(maskwindows=maskWindows)
            plotData = np.concatenate(
                (plotData, np.squeeze(stats[:, options["eFreqI"], idx]))
            )
        # remove infinities and nans
        plotData = plotData[np.isfinite(plotData)]

        # x axis options
        xlim = (
            options["xlim"]
            if len(options["xlim"]) > 0
            else [np.min(plotData), np.max(plotData)]
        )
        plt.xlim(xlim)
        plt.xlabel("Value", fontsize=plotfonts["axisLabel"])
        # now plot with xlim in mind
        plt.hist(plotData, numbins, range=xlim, facecolor="red", alpha=0.75)
        plt.grid()
        # y axis options
        plt.ylabel("Count", fontsize=plotfonts["axisLabel"])
        # set tick sizes
        for label in ax.get_xticklabels() + ax.get_yticklabels():
            label.set_fontsize(plotfonts["axisTicks"])

    # plot format, show and save
    fig.tight_layout(rect=[0.02, 0.02, 0.98, 0.92])
    if options["save"]:
        impath = projData.imagePath
        sampleFreqStr = fileFormatSampleFreq(sampleFreq)
        filename = "statHist_{:s}_{:s}_{:s}_dec{:d}_efreq{:d}_{:s}".format(
            stat,
            site,
            sampleFreqStr,
            options["declevel"],
            options["eFreqI"],
            options["specdir"],
        )
        if options["maskname"] != "":
            filename = "{}_{}".format(filename, options["maskname"])
        savename = savePlot(impath, filename, fig)
        projectText("Image saved to file {}".format(savename))
    if options["show"]:
        plt.show(block=options["plotoptions"]["block"])
    if not options["show"] and options["save"]:
        plt.close(fig)
        return None
    return fig