def bottleneck(inputs, depth, depth_bottleneck, stride, rate=1,
               outputs_collections=None, scope=None):
    """Bottleneck residual unit variant with BN before convolutions.

    This is the full preactivation residual unit variant proposed in [2]. See
    Fig. 1(b) of [2] for its definition. Note that we use here the bottleneck
    variant which has an extra bottleneck layer.

    When putting together two consecutive ResNet blocks that use this unit, one
    should use stride = 2 in the last unit of the first block.

    Args:
      inputs: A tensor of size [batch, height, width, channels].
      depth: The depth of the ResNet unit output.
      depth_bottleneck: The depth of the bottleneck layers.
      stride: The ResNet unit's stride. Determines the amount of downsampling of
        the units output compared to its input.
      rate: An integer, rate for atrous convolution.
      outputs_collections: Collection to add the ResNet unit output.
      scope: Optional variable_scope.

    Returns:
      The ResNet unit's output.
    """
    with tf.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc:
        depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
        preact = slim.batch_norm(inputs, activation_fn=tf.nn.relu, scope='preact')

        if depth == depth_in:
            shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
        else:
            shortcut = slim.conv2d(preact, depth, [1, 1], stride=stride,
                                   normalizer_fn=None, activation_fn=None,
                                   scope='shortcut')

        residual = slim.conv2d(preact, depth_bottleneck, [1, 1], stride=1,
                               scope='conv1')
        residual = resnet_utils.conv2d_same(residual, depth_bottleneck, 3, stride,
                                            rate=rate, scope='conv2')
        residual = slim.conv2d(residual, depth, [1, 1], stride=1,
                               normalizer_fn=None, activation_fn=None,
                               scope='conv3')

        output = shortcut + residual

        return slim.utils.collect_named_outputs(outputs_collections,
                                                sc.name,
                                                output)
Esempio n. 2
0
def bottleneck(inputs,
               depth,
               depth_bottleneck,
               stride,
               rate=1,
               outputs_collections=None,
               scope=None,
               use_bounded_activations=False):
    """Bottleneck residual unit variant with BN after convolutions.

  This is the original residual unit proposed in [1]. See Fig. 1(a) of [2] for
  its definition. Note that we use here the bottleneck variant which has an
  extra bottleneck layer.

  When putting together two consecutive ResNet blocks that use this unit, one
  should use stride = 2 in the last unit of the first block.

  Args:
    inputs: A tensor of size [batch, height, width, channels].
    depth: The depth of the ResNet unit output.
    depth_bottleneck: The depth of the bottleneck layers.
    stride: The ResNet unit's stride. Determines the amount of downsampling of
      the units output compared to its input.
    rate: An integer, rate for atrous convolution.
    outputs_collections: Collection to add the ResNet unit output.
    scope: Optional variable_scope.
    use_bounded_activations: Whether or not to use bounded activations. Bounded
      activations better lend themselves to quantized inference.

  Returns:
    The ResNet unit's output.
  """
    with tf.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
        depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
        if depth == depth_in:
            shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
        else:
            shortcut = slim.conv2d(
                inputs,
                depth, [1, 1],
                stride=stride,
                activation_fn=tf.nn.relu6 if use_bounded_activations else None,
                scope='shortcut')

        residual = slim.conv2d(inputs,
                               depth_bottleneck, [1, 1],
                               stride=1,
                               scope='conv1')
        residual = resnet_utils.conv2d_same(residual,
                                            depth_bottleneck,
                                            3,
                                            stride,
                                            rate=rate,
                                            scope='conv2')
        residual = slim.conv2d(residual,
                               depth, [1, 1],
                               stride=1,
                               activation_fn=None,
                               scope='conv3')

        if use_bounded_activations:
            # Use clip_by_value to simulate bandpass activation.
            residual = tf.clip_by_value(residual, -6.0, 6.0)
            output = tf.nn.relu6(shortcut + residual)
        else:
            output = tf.nn.relu(shortcut + residual)

        return slim.utils.collect_named_outputs(outputs_collections, sc.name,
                                                output)