Esempio n. 1
0
 def sail_point(centre, radius, a, d):
     #        m = vec.rotation_3d_matrix((d, 0.0, 90.0 - a))
     #        m = vec.tilt_3d_matrix(a, d)
     v = np.array((0.0, radius, 0.0))
     m = vec.rotation_matrix_3d_axial(0, d)
     v = vec.rotate_vector(m, v)
     m = vec.rotation_matrix_3d_axial(2, 90.0 + a)
     v = vec.rotate_vector(m, v)
     return centre + v
Esempio n. 2
0
def test_rotation():
    x = 47.3
    y = -32.9
    p = np.array((1234.2, 106.7, 742.5))
    m = vec.rotation_3d_matrix((x, 0.0, y))
    rm = vec.reverse_rotation_3d_matrix((x, 0.0, y))
    pp = vec.rotate_vector(m, p)
    ppp = vec.rotate_vector(rm, pp)
    assert_array_almost_equal(p, ppp)
Esempio n. 3
0
    def global_to_local(
            self,
            xyz: PointType,
            global_z_inc_down: bool = True) -> Tuple[float, float, float]:
        """Convert a single xyz point from the parent coordinate reference system to this one."""

        x, y, z = xyz
        if self.x_offset != 0.0:
            x -= self.x_offset
        if self.y_offset != 0.0:
            y -= self.y_offset
        if global_z_inc_down != self.z_inc_down:
            z = -z
        if self.z_offset != 0.0:
            z -= self.z_offset
        if self.rotated:
            (x, y, z) = vec.rotate_vector(self.rotation_matrix,
                                          np.array((x, y, z)))
        return (x, y, z)
Esempio n. 4
0
    def local_to_global(
            self,
            xyz: PointType,
            global_z_inc_down: bool = True) -> Tuple[float, float, float]:
        """Convert a single xyz point from this coordinate reference system to the parent one."""

        if self.rotated:
            (x, y, z) = vec.rotate_vector(self.reverse_rotation_matrix,
                                          np.array(xyz))
        else:
            (x, y, z) = xyz
        if self.x_offset != 0.0:
            x += self.x_offset
        if self.y_offset != 0.0:
            y += self.y_offset
        if self.z_offset != 0.0:
            z += self.z_offset
        if global_z_inc_down != self.z_inc_down:
            z = -z
        return (x, y, z)
Esempio n. 5
0
    def __calculate_trajectory_from_inclination_and_azimuth(self, survey):
        """ Calculate well trajectory from inclination and azimuth data."""

        for sp in range(1, self.knot_count):
            i1 = survey.inclinations[sp - 1]
            i2 = survey.inclinations[sp]
            az1 = survey.azimuths[sp - 1]
            az2 = survey.azimuths[sp]
            delta_md = survey.measured_depths[sp] - survey.measured_depths[sp -
                                                                           1]
            assert delta_md > 0.0
            if i1 == i2 and az1 == az2:
                matrix = vec.rotation_3d_matrix(
                    (180.0 - i1, -az1, 0.0))  # TODO: check sign of az1
                delta_v = vec.rotate_vector(matrix,
                                            np.array([0.0, delta_md, 0.0]))
            else:
                i1 = maths.radians(i1)
                i2 = maths.radians(i2)
                az1 = maths.radians(az1)
                az2 = maths.radians(az2)
                sin_i1 = maths.sin(i1)
                sin_i2 = maths.sin(i2)
                cos_theta = min(
                    max(
                        maths.cos(i2 - i1) - sin_i1 * sin_i2 *
                        (1.0 - maths.cos(az2 - az1)), -1.0), 1.0)
                theta = maths.acos(cos_theta)
                #           theta = maths.acos(sin_i1 * sin_i2 * maths.cos(az2 - az1)  +  (maths.cos(i1) * maths.cos(i2)))
                assert theta != 0.0  # shouldn't happen as covered by if clause above
                half_rf = maths.tan(0.5 * theta) / theta
                delta_y = delta_md * half_rf * ((sin_i1 * maths.cos(az1)) +
                                                (sin_i2 * maths.cos(az2)))
                delta_x = delta_md * half_rf * ((sin_i1 * maths.sin(az1)) +
                                                (sin_i2 * maths.sin(az2)))
                delta_z = delta_md * half_rf * (maths.cos(i1) + maths.cos(i2))
                delta_v = np.array((delta_x, delta_y, delta_z))
            self.control_points[sp] = self.control_points[sp - 1] + delta_v
Esempio n. 6
0
def reorient(points, rough=True, max_dip=None):
    """Returns a reoriented copy of a set of points, such that z axis is approximate normal to average plane of points.

    arguments:
       points (numpy float array of shape (..., 3)): the points to be reoriented
       rough (bool, default True): if True, the resulting orientation will be within around 10 degrees of the optimum;
          if False, that reduces to around 2.5 degrees of the optimum
       max_dip (float, optional): if present, the reorientation of perspective off vertical is
          limited to this angle in degrees

    returns:
       numpy float array of the same shape as points, numpy xyz vector, numpy 3x3 matrix;
       the array being a copy of points rotated in 3D space to minimise the z range;
       the vector is a normal vector to the original points;
       the matrix is rotation matrix used to transform the original points to the reoriented points

    notes:
       the original points array is not modified by this function;
       the function may typically be called prior to the Delauney triangulation, which uses an xy projection to
       determine the triangulation
    """
    def z_range(p):
        return np.nanmax(p[..., 2]) - np.nanmin(p[..., 2])

    def best_angles(points, mid_x, mid_y, steps, d_theta):
        best_range = None
        best_x_rotation = None
        best_y_rotation = None
        half_steps = float(steps - 1) / 2.0
        for xi in range(steps):
            x_degrees = mid_x + (float(xi) - half_steps) * d_theta
            for yi in range(steps):
                y_degrees = mid_y + (float(yi) - half_steps) * d_theta
                rotation_m = vec.rotation_3d_matrix(
                    (x_degrees, 0.0, y_degrees))
                p = points.copy()
                rotated_p = vec.rotate_array(rotation_m, p)
                z_r = z_range(rotated_p)
                if best_range is None or z_r < best_range:
                    best_range = z_r
                    best_x_rotation = x_degrees
                    best_y_rotation = y_degrees
        return (best_x_rotation, best_y_rotation)

    assert points.ndim >= 2 and points.shape[-1] == 3

    # coarse iteration trying a few different angles
    best_x_rotation, best_y_rotation = best_angles(points, 0.0, 0.0, 7, 30.0)

    # finer iteration searching around the best coarse rotation
    best_x_rotation, best_y_rotation = best_angles(points, best_x_rotation,
                                                   best_y_rotation, 5, 10.0)

    if not rough:
        # finer iteration searching around the best coarse rotation
        best_x_rotation, best_y_rotation = best_angles(points, best_x_rotation,
                                                       best_y_rotation, 7, 2.5)

    rotation_m = vec.rotation_3d_matrix(
        (best_x_rotation, 0.0, best_y_rotation))
    reverse_m = vec.reverse_rotation_3d_matrix(
        (best_x_rotation, 0.0,
         best_y_rotation))  # just the transpose of abpve!

    if max_dip is not None:
        v = vec.rotate_vector(reverse_m, np.array((0.0, 0.0, 1.0)))
        incl = vec.inclination(v)
        if incl > max_dip:
            azi = vec.azimuth(v)
            rotation_m = vec.tilt_3d_matrix(
                azi, max_dip
            )  # TODO: check whether any reverse direction errors here
            reverse_m = rotation_m.T

    p = points.copy()

    return vec.rotate_array(rotation_m,
                            p), vec.rotate_vector(reverse_m,
                                                  np.array((0.0, 0.0,
                                                            1.0))), rotation_m