Esempio n. 1
0
    def write_hdf5_and_create_xml(self):
        """Write dataframe data to hdf5 file and create xml for RESQML objects to represent dataframe."""

        self._set_mesh_from_df(
        )  # writes hdf5 data and creates xml for mesh (and property)

        if self.column_lookup is None:
            self.column_lookup = rqp.StringLookup(
                self.model,
                int_to_str_dict=dict(enumerate(self.df.columns)),
                title='dataframe columns')
            self.column_lookup_uuid = self.column_lookup.uuid
            sl_node = self.column_lookup.create_xml()
        else:
            sl_node = self.column_lookup.root
        if sl_node is not None:
            self.model.create_reciprocal_relationship(self.mesh.root,
                                                      'destinationObject',
                                                      sl_node, 'sourceObject')

        if self.uom_list and self.uom_lookup is None:
            self.uom_lookup = rqp.StringLookup(self.model,
                                               int_to_str_dict=dict(
                                                   enumerate(self.uom_list)),
                                               title='dataframe units')
            self.uom_lookup_uuid = self.uom_lookup.uuid
            ul_node = self.uom_lookup.create_xml()
        elif self.uom_lookup is not None:
            ul_node = self.uom_lookup.root
        else:
            ul_node = None
        if ul_node is not None:
            self.model.create_reciprocal_relationship(self.mesh.root,
                                                      'destinationObject',
                                                      ul_node, 'sourceObject')
Esempio n. 2
0
def lookup_from_cellio(line, model):
    """Create a StringLookup Object from a cell I/O row containing a categorical column name and details.

    Arguments:
       line: a string from a cell I/O file, containing the column (log) name, type and categorical information
       model: the model to add the StringTableLookup to
    Returns:
       uuid: the uuid of a StringTableLookup, either for a newly created table, or for an existing table if an identical one exists
    """
    lookup_dict = {}
    value, string = None, None
    # Generate a dictionary of values and strings
    for i, word in enumerate(line.split()):
        if i == 0:
            title = word
        elif not i < 2:
            if value is not None and string is not None:
                lookup_dict[value] = string
                value, string = None, None
            if value is None:
                value = int(word)
            else:
                if i == len(line.split()) - 1:
                    lookup_dict[value] = word
                else:
                    string = word

    # Check if a StringLookupTable already exists in the model, with the same name and values
    for existing_uuid in model.uuids(obj_type='StringTableLookup'):
        table = rqp.StringLookup(parent_model=model, uuid=existing_uuid)
        if table.title == title:
            if table.str_dict == lookup_dict:
                return table.uuid  # If the exact table exists, reuse it by returning the uuid

    # If no matching StringLookupTable exists, make a new one and return the uuid
    lookup = rqp.StringLookup(parent_model=model,
                              int_to_str_dict=lookup_dict,
                              title=title)
    lookup.create_xml(add_as_part=True)
    return lookup.uuid
Esempio n. 3
0
def example_model_with_prop_ts_rels(tmp_path):
    """Model with a grid (5x5x3) and properties.
   Properties:
   - Zone (discrete)
   - VPC (discrete)
   - Fault block (discrete)
   - Facies (discrete)
   - NTG (continuous)
   - POR (continuous)
   - SW (continuous) (recurrent)
   """
    model_path = str(tmp_path / 'test_model.epc')
    model = Model(create_basics=True,
                  create_hdf5_ext=True,
                  epc_file=model_path,
                  new_epc=True)
    model.store_epc(model.epc_file)

    grid = grr.RegularGrid(parent_model=model,
                           origin=(0, 0, 0),
                           extent_kji=(3, 5, 5),
                           crs_uuid=rqet.uuid_for_part_root(model.crs_root),
                           set_points_cached=True)
    grid.cache_all_geometry_arrays()
    grid.write_hdf5_from_caches(file=model.h5_file_name(file_must_exist=False),
                                mode='w')

    grid.create_xml(ext_uuid=model.h5_uuid(),
                    title='grid',
                    write_geometry=True,
                    add_cell_length_properties=False)
    model.store_epc()

    zone = np.ones(shape=(5, 5), dtype='int')
    zone_array = np.array([zone, zone + 1, zone + 2], dtype='int')

    vpc = np.array([[1, 1, 1, 2, 2], [1, 1, 1, 2, 2], [1, 1, 1, 2, 2],
                    [1, 1, 1, 2, 2], [1, 1, 1, 2, 2]],
                   dtype='int')
    vpc_array = np.array([vpc, vpc, vpc], dtype='int')

    facies = np.array([[1, 1, 1, 2, 2], [1, 1, 2, 2, 2], [1, 2, 2, 2, 3],
                       [2, 2, 2, 3, 3], [2, 2, 3, 3, 3]],
                      dtype='int')
    facies_array = np.array([facies, facies, facies], dtype='int')

    perm = np.array([[1, 1, 1, 10, 10], [1, 1, 1, 10, 10], [1, 1, 1, 10, 10],
                     [1, 1, 1, 10, 10], [1, 1, 1, 10, 10]])
    perm_array = np.array([perm, perm, perm], dtype='float')

    fb = np.array([[1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1],
                   [2, 2, 2, 2, 2], [2, 2, 2, 2, 2]],
                  dtype='int')
    fb_array = np.array([fb, fb, fb], dtype='int')

    ntg = np.array([[0, 0.5, 0, 0.5, 0], [0.5, 0, 0.5, 0, 0.5],
                    [0, 0.5, 0, 0.5, 0], [0.5, 0, 0.5, 0, 0.5],
                    [0, 0.5, 0, 0.5, 0]])
    ntg1_array = np.array([ntg, ntg, ntg])
    ntg2_array = np.array([ntg + 0.1, ntg + 0.1, ntg + 0.1])

    por = np.array([[1, 1, 1, 1, 1], [0.5, 0.5, 0.5, 0.5,
                                      0.5], [1, 1, 1, 1, 1],
                    [0.5, 0.5, 0.5, 0.5, 0.5], [1, 1, 1, 1, 1]])
    por1_array = np.array([por, por, por])
    por2_array = np.array([por - 0.1, por - 0.1, por - 0.1])

    sat = np.array([[1, 0.5, 1, 0.5, 1], [1, 0.5, 1, 0.5, 1],
                    [1, 0.5, 1, 0.5, 1], [1, 0.5, 1, 0.5, 1],
                    [1, 0.5, 1, 0.5, 1]])
    sat1_array = np.array([sat, sat, sat])
    sat2_array = np.array([sat, sat, np.where(sat == 0.5, 0.75, sat)])
    sat3_array = np.array([
        np.where(sat == 0.5, 0.75, sat),
        np.where(sat == 0.5, 0.75, sat),
        np.where(sat == 0.5, 0.75, sat)
    ])

    collection = rqp.GridPropertyCollection()
    collection.set_grid(grid)

    ts = rqts.TimeSeries(parent_model=model, first_timestamp='2000-01-01Z')
    ts.extend_by_days(365)
    ts.extend_by_days(365)

    ts.create_xml()

    lookup = rqp.StringLookup(parent_model=model,
                              int_to_str_dict={
                                  1: 'channel',
                                  2: 'interbedded',
                                  3: 'shale'
                              })
    lookup.create_xml()

    model.store_epc()

    # Add non-varying properties
    for array, name, kind, discrete, facet_type, facet in zip(
        [zone_array, vpc_array, fb_array, perm_array],
        ['Zone', 'VPC', 'Fault block', 'Perm'],
        ['discrete', 'discrete', 'discrete', 'permeability rock'],
        [True, True, True, False], [None, None, None, 'direction'],
        [None, None, None, 'J']):
        collection.add_cached_array_to_imported_list(cached_array=array,
                                                     source_info='',
                                                     keyword=name,
                                                     discrete=discrete,
                                                     uom=None,
                                                     time_index=None,
                                                     null_value=None,
                                                     property_kind=kind,
                                                     facet_type=facet_type,
                                                     facet=facet,
                                                     realization=None)
        collection.write_hdf5_for_imported_list()
        collection.create_xml_for_imported_list_and_add_parts_to_model()

    # Add realisation varying properties
    for array, name, kind, rel in zip(
        [ntg1_array, por1_array, ntg2_array, por2_array],
        ['NTG', 'POR', 'NTG', 'POR'],
        ['net to gross ratio', 'porosity', 'net to gross ratio', 'porosity'],
        [0, 0, 1, 1]):
        collection.add_cached_array_to_imported_list(cached_array=array,
                                                     source_info='',
                                                     keyword=name,
                                                     discrete=False,
                                                     uom=None,
                                                     time_index=None,
                                                     null_value=None,
                                                     property_kind=kind,
                                                     facet_type=None,
                                                     facet=None,
                                                     realization=rel)
        collection.write_hdf5_for_imported_list()
        collection.create_xml_for_imported_list_and_add_parts_to_model()

    # Add categorial property
    collection.add_cached_array_to_imported_list(cached_array=facies_array,
                                                 source_info='',
                                                 keyword='Facies',
                                                 discrete=True,
                                                 uom=None,
                                                 time_index=None,
                                                 null_value=None,
                                                 property_kind='discrete',
                                                 facet_type=None,
                                                 facet=None,
                                                 realization=None)
    collection.write_hdf5_for_imported_list()
    collection.create_xml_for_imported_list_and_add_parts_to_model(
        string_lookup_uuid=lookup.uuid)

    # Add time varying properties
    for array, ts_index in zip([sat1_array, sat2_array, sat3_array],
                               [0, 1, 2]):
        collection.add_cached_array_to_imported_list(
            cached_array=array,
            source_info='',
            keyword='SW',
            discrete=False,
            uom=None,
            time_index=ts_index,
            null_value=None,
            property_kind='saturation',
            facet_type='what',
            facet='water',
            realization=None)
        collection.write_hdf5_for_imported_list()
        collection.create_xml_for_imported_list_and_add_parts_to_model(
            time_series_uuid=ts.uuid)
    model.store_epc()

    return model
Esempio n. 4
0
    def equivalent_uuid_for_part(self,
                                 part,
                                 immigrant_model=None,
                                 ignore_identical_part=False):
        """Returns uuid of an equivalent part in resident model, or None if no equivalent found."""

        #      log.debug('Looking for equivalent uuid for: ' + str(part))
        if not part:
            return None
        if immigrant_model is None:
            immigrant_model = self.model
        immigrant_uuid = rqet.uuid_in_part_name(part)
        #      log.debug('   immigrant uuid: ' + str(immigrant_uuid))
        if immigrant_uuid in self.map:
            #         log.debug('   known to be equivalent to: ' + str(self.map[immigrant_uuid]))
            return self.map[immigrant_uuid]
        obj_type = immigrant_model.type_of_part(part, strip_obj=True)
        if obj_type is None or obj_type not in consolidatable_list:
            return None
        #      log.debug('   object type is consolidatable')
        resident_uuids = self.model.uuids(obj_type=obj_type)
        if resident_uuids is None or len(resident_uuids) == 0:
            #         log.debug('   no resident parts found of type: ' + str(obj_type))
            return None
#      log.debug(f'   {len(resident_uuids)} resident parts of same class')
        if not ignore_identical_part:
            for resident_uuid in resident_uuids:
                if bu.matching_uuids(resident_uuid, immigrant_uuid):
                    #               log.debug('   uuid already resident: ' + str(resident_uuid))
                    return resident_uuid


#      log.debug('   preparing immigrant object')
        if obj_type.endswith('Interpretation') or obj_type.endswith('Feature'):
            immigrant_obj = rqo.__dict__[obj_type](immigrant_model,
                                                   uuid=immigrant_uuid)
        elif obj_type.endswith('Crs'):
            immigrant_obj = rqc.Crs(immigrant_model, uuid=immigrant_uuid)
        elif obj_type == 'TimeSeries':
            immigrant_obj = rqt.TimeSeries(immigrant_model,
                                           uuid=immigrant_uuid)
        elif obj_type == 'StringTableLookup':
            immigrant_obj = rqp.StringLookup(immigrant_model,
                                             uuid=immigrant_uuid)
        elif obj_type == 'PropertyKind':
            immigrant_obj = rqp.PropertyKind(immigrant_model,
                                             uuid=immigrant_uuid)
        else:
            raise Exception('code failure')
        assert immigrant_obj is not None
        for resident_uuid in resident_uuids:
            #         log.debug('   considering resident: ' + str(resident_uuid))
            if ignore_identical_part and bu.matching_uuids(
                    resident_uuid, immigrant_uuid):
                continue
            if obj_type.endswith('Interpretation') or obj_type.endswith(
                    'Feature'):
                resident_obj = rqo.__dict__[obj_type](self.model,
                                                      uuid=resident_uuid)
            elif obj_type.endswith('Crs'):
                resident_obj = rqc.Crs(self.model, uuid=resident_uuid)
            elif obj_type == 'TimeSeries':
                resident_obj = rqt.TimeSeries(self.model, uuid=resident_uuid)
            elif obj_type == 'StringTableLookup':
                resident_obj = rqp.StringLookup(self.model, uuid=resident_uuid)
            elif obj_type == 'PropertyKind':
                resident_obj = rqp.PropertyKind(self.model, uuid=resident_uuid)
            else:
                raise Exception('code failure')
            assert resident_obj is not None
            #         log.debug('   comparing with: ' + str(resident_obj.uuid))
            if immigrant_obj == resident_obj:  # note: == operator overloaded with equivalence method for these classes
                while resident_uuid in self.map:
                    #               log.debug('   following equivalence for: ' + str(resident_uuid))
                    resident_uuid = self.map[resident_uuid]
                self.map[immigrant_uuid] = resident_uuid
                #            log.debug('   new equivalence found with: ' + str(resident_uuid))
                return resident_uuid
        return None
Esempio n. 5
0
def gather_ensemble(case_epc_list,
                    new_epc_file,
                    consolidate=True,
                    shared_grids=True,
                    shared_time_series=True,
                    create_epc_lookup=True):
    """Creates a composite resqml dataset by merging all parts from all models in list, assigning realization numbers.

    arguments:
       case_epc_list (list of strings): paths of individual realization epc files
       new_epc_file (string): path of new composite epc to be created (with paired hdf5 file)
       consolidate (boolean, default True): if True, simple parts are tested for equivalence and where similar enough
          a single shared object is established in the composite dataset
       shared_grids (boolean, default True): if True and consolidate is True, then grids are also consolidated
          with equivalence based on extent of grids (and citation titles if grid extents within the first case
          are not distinct); ignored if consolidate is False
       shared_time_series (boolean, default False): if True and consolidate is True, then time series are consolidated
          with equivalence based on title, without checking that timestamp lists are the same
       create_epc_lookup (boolean, default True): if True, a StringLookupTable is created to map from realization
          number to case epc path

    notes:
       property objects will have an integer realization number assigned, which matches the corresponding index into
       the case_epc_list;
       if consolidating with shared grids, then only properties will be gathered from realisations after the first and
       an exception will be raised if the grids are not matched between realisations
    """

    if not consolidate:
        shared_grids = False

    composite_model = rq.Model(new_epc_file,
                               new_epc=True,
                               create_basics=True,
                               create_hdf5_ext=True)

    epc_lookup_dict = {}

    for r, case_epc in enumerate(case_epc_list):
        t_r_start = time()  # debug
        log.info(f'gathering realszation {r}: {case_epc}')
        epc_lookup_dict[r] = case_epc
        case_model = rq.Model(case_epc)
        if r == 0:  # first case
            log.info('first case')  # debug
            composite_model.copy_all_parts_from_other_model(
                case_model, realization=0, consolidate=consolidate)
            if shared_time_series:
                host_ts_uuids = case_model.uuids(obj_type='TimeSeries')
                host_ts_titles = []
                for ts_uuid in host_ts_uuids:
                    host_ts_titles.append(case_model.title(uuid=ts_uuid))
            if shared_grids:
                host_grid_uuids = case_model.uuids(
                    obj_type='IjkGridRepresentation')
                host_grid_shapes = []
                host_grid_titles = []
                title_match_required = False
                for grid_uuid in host_grid_uuids:
                    grid_root = case_model.root(uuid=grid_uuid)
                    host_grid_shapes.append(
                        grr.extent_kji_from_root(grid_root))
                    host_grid_titles.append(
                        rqet.citation_title_for_node(grid_root))
                if len(set(host_grid_shapes)) < len(host_grid_shapes):
                    log.warning(
                        'shapes of representative grids are not distinct, grid titles must match during ensemble gathering'
                    )
                    title_match_required = True
        else:  # subsequent cases
            log.info('subsequent case')  # debug
            composite_model.consolidation = None  # discard any previous mappings to limit dictionary growth
            if shared_time_series:
                for ts_uuid in case_model.uuids(obj_type='TimeSeries'):
                    ts_title = case_model.title(uuid=ts_uuid)
                    ts_index = host_ts_titles.index(ts_title)
                    host_ts_uuid = host_ts_uuids[ts_index]
                    composite_model.force_consolidation_uuid_equivalence(
                        ts_uuid, host_ts_uuid)
            if shared_grids:
                log.info('shared grids')  # debug
                for grid_uuid in case_model.uuids(
                        obj_type='IjkGridRepresentation'):
                    grid_root = case_model.root(uuid=grid_uuid)
                    grid_extent = grr.extent_kji_from_root(grid_root)
                    host_index = None
                    if grid_extent in host_grid_shapes:
                        if title_match_required:
                            case_grid_title = rqet.citation_title_for_node(
                                grid_root)
                            for host_grid_index in len(host_grid_uuids):
                                if grid_extent == host_grid_shapes[
                                        host_grid_index] and case_grid_title == host_grid_titles[
                                            host_grid_index]:
                                    host_index = host_grid_index
                                    break
                        else:
                            host_index = host_grid_shapes.index(grid_extent)
                    assert host_index is not None, 'failed to match grids when gathering ensemble'
                    composite_model.force_consolidation_uuid_equivalence(
                        grid_uuid, host_grid_uuids[host_index])
                    grid_relatives = case_model.parts(related_uuid=grid_uuid)
                    t_props = 0.0
                    composite_h5_file_name = composite_model.h5_file_name()
                    composite_h5_uuid = composite_model.h5_uuid()
                    case_h5_file_name = case_model.h5_file_name()
                    for part in grid_relatives:
                        if 'Property' in part:
                            t_p_start = time()
                            composite_model.copy_part_from_other_model(
                                case_model,
                                part,
                                realization=r,
                                consolidate=True,
                                force=shared_time_series,
                                self_h5_file_name=composite_h5_file_name,
                                h5_uuid=composite_h5_uuid,
                                other_h5_file_name=case_h5_file_name)
                            t_props += time() - t_p_start
                    log.info(f'time props: {t_props:.3f} sec')  # debug
            else:
                log.info('non shared grids')  # debug
                composite_model.copy_all_parts_from_other_model(
                    case_model, realization=r, consolidate=consolidate)
        log.info(f'case time: {time() - t_r_start:.2f} secs')  # debug

    if create_epc_lookup and len(epc_lookup_dict):
        epc_lookup = rqp.StringLookup(composite_model,
                                      int_to_str_dict=epc_lookup_dict,
                                      title='ensemble epc table')
        epc_lookup.create_xml()

    composite_model.store_epc()

    log.info(
        f'{len(epc_lookup_dict)} realizations merged into ensemble {new_epc_file}'
    )
Esempio n. 6
0
    def __init__(
            self,
            model,
            support_root=None,  # deprecated
            uuid=None,
            df=None,
            uom_list=None,
            realization=None,
            title='dataframe',
            column_lookup_uuid=None,
            uom_lookup_uuid=None,
            extra_metadata=None):
        """Create a new Dataframe object from either a previously stored property or a pandas dataframe.

        arguments:
           model (model.Model): the model to which the new Dataframe will be attached
           support_root (lxml.Element, DEPRECATED): use uuid instead
           uuid (uuid.UUID, optional): the uuid of an existing Grid2dRepresentation
              object acting as support for a dataframe property (or holding the dataframe as z values)
           df (pandas.DataFrame, optional): a dataframe from which the new Dataframe is to be created;
              if both uuid (or support_root) and df are supplied, realization must not be None and a new
              realization property will be created
           uom_list (list of str, optional): a list holding the units of measure for each
              column; if present, length of list must match number of columns in df; ignored if
              uuid or support_root is not None
           realization (int, optional): if present, the realization number of the RESQML property
              holding the dataframe
           title (str, default 'dataframe'): used as the citation title for the Mesh (and property);
              ignored if uuid or support_root is not None
           column_lookup_uuid (uuid, optional): if present, the uuid of a string lookup table holding
              the column names; if present, the contents and order of the table must match the columns
              in the dataframe; if absent, a new lookup table will be created; ignored if support_root
              is not None
           uom_lookup_uuid (uuid, optional): if present, the uuid of a string lookup table holding
              the units of measure for each column; if None and uom_list is present, a new table
              will be created; if both uom_list and uom_lookup_uuid are present, their contents
              must match; ignored if support_root is not None
           extra_metadata (dict, optional): if present, a dictionary of extra metadata items, str: str;
              ignored if uuid (or support_root) is not None

        returns:
           a newly created Dataframe object

        notes:
           when initialising from an existing RESQML object, the supporting mesh and its property should
           have been originally created using this class; when working with ensembles, each object of this
           class will only handle the data for one realization, though they may share a common support_root
        """

        assert uuid is not None or support_root is not None or df is not None
        assert (uuid is None and
                support_root is None) or df is None or realization is not None

        if uuid is None:
            if support_root is not None:
                warnings.warn(
                    "support_root parameter is deprecated, use uuid instead",
                    DeprecationWarning)
                uuid = rqet.uuid_for_part_root(support_root)
        else:
            support_root = model.root_for_uuid(uuid)

        self.model = model
        self.df = None
        self.n_rows = self.n_cols = 0
        self.uom_list = None
        self.realization = realization
        self.title = title
        self.mesh = None  # only generated when needed for write_hdf5(), create_xml()
        self.pc = None  # property collection; only generated when needed for write_hdf5(), create_xml()
        self.column_lookup_uuid = column_lookup_uuid
        self.column_lookup = None  # string lookup table mapping column index (0 based) to column name
        self.uom_lookup_uuid = uom_lookup_uuid
        self.uom_lookup = None  # string lookup table mapping column index (0 based) to uom
        self.extra_metadata = extra_metadata

        if uuid is not None:
            assert rqet.node_type(support_root) == 'obj_Grid2dRepresentation'
            self.mesh = rqs.Mesh(self.model, uuid=uuid)
            self.extra_metadata = self.mesh.extra_metadata
            assert 'dataframe' in self.extra_metadata and self.extra_metadata[
                'dataframe'] == 'true'
            self.title = self.mesh.title
            self.n_rows, self.n_cols = self.mesh.nj, self.mesh.ni
            cl_uuid = self.model.uuid(obj_type='StringTableLookup',
                                      related_uuid=uuid,
                                      title='dataframe columns')
            assert cl_uuid is not None, 'column name lookup table not found for dataframe'
            self.column_lookup = rqp.StringLookup(self.model, uuid=cl_uuid)
            self.column_lookup_uuid = self.column_lookup.uuid
            assert self.column_lookup.length() == self.n_cols
            ul_uuid = self.model.uuid(obj_type='StringTableLookup',
                                      related_uuid=uuid,
                                      title='dataframe units')
            if ul_uuid is not None:
                self.uom_lookup = rqp.StringLookup(self.model, uuid=ul_uuid)
                self.uom_lookup_uuid = self.uom_lookup.uuid
                self.uom_list = self.uom_lookup.get_list()
            da = self.mesh.full_array_ref(
            )[...,
              2]  # dataframe data as 2D numpy array, defaulting to z values in mesh
            existing_pc = rqp.PropertyCollection(support=self.mesh)
            existing_count = 0 if existing_pc is None else existing_pc.number_of_parts(
            )
            if df is None:  # existing dara, either in mesh or property
                if existing_count > 0:  # use property data instead of z values
                    if existing_count == 1:
                        if self.realization is not None:
                            assert existing_pc.realization_for_part(
                                existing_pc.singleton()) == self.realization
                    else:
                        assert self.realization is not None, 'no realization specified when accessing ensemble dataframe'
                    da = existing_pc.single_array_ref(
                        realization=self.realization)
                    assert da is not None and da.ndim == 2 and da.shape == (
                        self.n_rows, self.n_cols)
                else:
                    assert realization is None
                self.df = pd.DataFrame(da,
                                       columns=self.column_lookup.get_list())
            else:  # both support_root and df supplied: add a new realisation
                if existing_count > 0:
                    assert existing_pc.singleton(
                        realization=self.realization
                    ) is None, 'dataframe realization already exists'
                self.df = df.copy()
                assert len(self.df) == self.n_rows
                assert len(self.df.columns) == self.n_rows
        else:
            assert df is not None, 'no dataframe (or support root) provided when instantiating DataFrame object'
            self.df = df.copy()
            # todo: check data type of columns – restrict to numerical data
            self.n_rows = len(self.df)
            self.n_cols = len(self.df.columns)
            if column_lookup_uuid is not None:
                self.column_lookup = rqp.StringLookup(self.model,
                                                      uuid=column_lookup_uuid)
                assert self.column_lookup is not None
                assert self.column_lookup.length() == self.n_cols
                assert all(self.df.columns == self.column_lookup.get_list()
                           )  # exact match of column names required!
            if uom_lookup_uuid is not None:
                self.uom_lookup = rqp.StringLookup(self.model,
                                                   uuid=uom_lookup_uuid)
                assert self.uom_lookup is not None
            if uom_list is not None:
                assert len(uom_list) == self.n_cols
                self.uom_list = uom_list.copy()
                if self.uom_lookup is not None:
                    assert self.uom_list == self.uom_lookup.get_list()
            elif self.uom_lookup is not None:
                self.uom_list = self.uom_lookup.get_list()