def __init__(self, numero_entradas_rams, tamanho_entrada, numero_discriminadores): self.retina = retina.Retina(tamanho_entrada) self.discriminadores = [] self.numero_discriminadores = numero_discriminadores for i in range(0, numero_discriminadores): self.discriminadores.append( discriminador.Discriminador(numero_entradas_rams, tamanho_entrada)) self.classificacao_discriminadores = [0] * numero_discriminadores
def __init__(self, numero_entradas_rams, tamanho_entrada, score_minimo, intervalo_crescimento): self.retina = retina.Retina(tamanho_entrada) self.discriminadores = [] self.numero_discriminadores = 0 self.numero_entradas_rams = numero_entradas_rams self.tamanho_entrada = tamanho_entrada self.score_minimo = score_minimo self.intervalo_crescimento = intervalo_crescimento self.classificacao_discriminadores = [] self.clusters = []
def __init__(self, numero_entradas_rams, tamanho_entrada, numero_discriminadores, score_minimo, intervalo_crescimento): self.retina = retina.Retina(tamanho_entrada) self.discriminadores = [] self.numero_discriminadores = numero_discriminadores self.numero_entradas_rams = numero_entradas_rams self.tamanho_entrada = tamanho_entrada self.score_minimo = score_minimo self.intervalo_crescimento = intervalo_crescimento for i in range(0, numero_discriminadores): self.discriminadores.append(discriminador_cluswisard.DiscriminadorCluswisard(numero_entradas_rams, tamanho_entrada, i)) self.classificacao_discriminadores = [0]*numero_discriminadores
def init_ipy(debug=False, nb_dir=None, api_url=None): # get config for c in filter(lambda x: not x.startswith('_'), config.__dict__.keys()): setattr(Ipy, c, getattr(config, c)) # set pathing if nb_dir and os.path.isdir(nb_dir): Ipy.NB_DIR = nb_dir else: Ipy.NB_DIR = os.getcwd() Ipy.LIB_DIR = Ipy.NB_DIR + '/lib' Ipy.TMP_DIR = Ipy.NB_DIR + '/tmp' Ipy.CCH_DIR = Ipy.NB_DIR + '/cache' Ipy.IMG_DIR = Ipy.NB_DIR + '/images' for d in (Ipy.LIB_DIR, Ipy.TMP_DIR, Ipy.IMG_DIR): if not os.path.isdir(d): os.mkdir(d) # set api if api_url is not None: Ipy.API_URL = api_url # set graphing tools Ipy.FL_PLOT = flotplot.FlotPlot() Ipy.RETINA = retina.Retina() Ipy.DEBUG = debug # load matR and extras ro.r('suppressMessages(library(matR))') ro.r('suppressMessages(library(gplots))') ro.r('suppressMessages(library(scatterplot3d))') # add tab completion from a dir - bit of a hack # skip names with hyphen '-' in them, its an operator and not valid name syntax :( # these are for kbase command line scripts, no .pl names = map(lambda x: os.path.basename(x), glob.glob(Ipy.KBASE_BIN + '/*')) names = filter( lambda x: (not x.endswith('.pl')) and (not x.endswith('.py')), names) Ipy.KBASE_CMDS = "\n".join(names) names = filter(lambda x: '-' not in x, names) add_tab_completion(names) # echo if Ipy.DEBUG: for k in filter(lambda x: not x.startswith('_'), Ipy.__dict__.keys()): print k, getattr(Ipy, k)
liquid.matrix_programmable_exc_inh[ use_retina_projections] = np.random.choice( [0, 1], size=np.sum(use_retina_projections)) liquid.matrix_programmable_w[use_retina_projections] = np.random.choice( [0, 1, 2, 3], size=np.sum(use_retina_projections)) liquid.program_config() ###### configure retina inputpop = pyNCS.Population('', '') inputpop.populate_by_id(nsetup, 'mn256r1', 'excitatory', np.linspace(0, 255, 256)) syncpop = pyNCS.Population("", "") syncpop.populate_by_id(nsetup, 'mn256r1', 'excitatory', [nsync]) #reset multiplexer chip.configurator._set_multiplexer(0) retina = ret.Retina(inputpop) retina._init_fpga_mapper() retina.map_retina_sync(syncpop, ncol_retina=ncol_retina_sync, neu_sync=nsync) ### neuron 255 is our sync neuron rr, pre, post = retina.map_retina_random_connectivity( inputpop, c=0.3, syntype='virtual_exc', ncol_sync=ncol_retina_sync) rr, pre, post = retina.map_retina_random_connectivity( inputpop, c=0.1, syntype='virtual_inh', ncol_sync=ncol_retina_sync) import RetinaInputs as ri win = ri.RetinaInputs(nsetup) #win.run(300) chip.load_parameters('biases/biases_reservoir_retina.biases')
p = ParameterSpace({ 'noise_std': ParameterRange(list(10.**(numpy.linspace(-.50, 1., N_exp_noise)))) }) name = sys.argv[0].split('.')[ 0] # name of the current script withpout the '.py' part results = shelve.open('results/mat-' + name) try: CRF = results['CRF'] except: # this is not mandatory but just a "easy_install progressbar" away # else remove all corresponding lines in this code... import progressbar # see http://projects.scipy.org/pipermail/scipy-dev/2008-January/008200.html import retina as model retina = model.Retina(N) retina.params['snr'] = 0 # no input # calculates the dimension of the parameter space results_dim, results_label = p.parameter_space_dimension_labels() # creates results array with size of parameter space dimension CRF = numpy.empty(results_dim) pbar = progressbar.ProgressBar(widgets=[ name, " ", progressbar.Percentage(), ' ', progressbar.Bar(), ' ', progressbar.ETA() ], maxval=numpy.prod(results_dim))