Esempio n. 1
0
 def format_data_dir(self):
     """Return correctly formatted raw data directory location."""
     return DATA_WRITE_PATH.format(dataset=self.script.name)
Esempio n. 2
0
    def download(self, engine=None, debug=False):
        Script.download(self, engine, debug)

        engine = self.engine
        csv_files = []
        request_src = "http://www.data-retriever.org/"
        base_url = "http://www.usanpn.org/npn_portal/observations/getObservations.xml?start_date={startYear}&end_date={endYear_date}&request_src={request_src}"
        header_values = ["observation_id",
                         "update_datetime",
                         "site_id",
                         "latitude",
                         "longitude",
                         "elevation_in_meters",
                         "state",
                         "species_id",
                         "genus",
                         "species",
                         "common_name",
                         "kingdom",
                         "individual_id",
                         "phenophase_id",
                         "phenophase_description",
                         "observation_date",
                         "day_of_year",
                         "phenophase_status",
                         "intensity_category_id",
                         "intensity_value",
                         "abundance_value"
                         ]

        columns = [("record_id", ("pk-auto",)),
                   ("observation_id", ("int",)),  # subsequently refered to as "status record"
                   ("update_datetime", ("char",)),
                   ("site_id", ("int",)),
                   ("latitude", ("double",)),
                   ("longitude", ("double",)),
                   ("elevation_in_meters", ("char",)),
                   ("state", ("char",)),
                   ("species_id", ("int",)),
                   ("genus", ("char",)),
                   ("species", ("char",)),
                   ("common_name", ("char",)),
                   ("kingdom", ("char",)),  # skip kingdom
                   ("individual_id", ("char",)),
                   ("phenophase_id", ("int",)),
                   ("phenophase_description", ("char",)),
                   ("observation_date", ("char",)),
                   ("day_of_year", ("char",)),
                   ("phenophase_status", ("char",)),
                   ("intensity_category_id", ("char",)),
                   ("intensity_value", ("char",)),
                   ("abundance_value", ("char",))
                   ]

        start_date = datetime.date(2009, 1, 1)
        end_date = datetime.date.today()

        while start_date < end_date:
            to_date = start_date + datetime.timedelta(90)
            if to_date >= end_date:
                data_url = base_url.format(startYear=str(start_date), endYear_date=str(end_date),
                                           request_src=request_src)
            else:
                data_url = base_url.format(startYear=str(start_date), endYear_date=str(to_date),
                                           request_src=request_src)

            xml_file_name = '{}'.format(start_date) + ".xml"
            engine.download_file(data_url, xml_file_name)

            # Create csv files for 3 months
            csv_observation = '{}'.format(start_date) + ".csv"
            csv_files.append(csv_observation)
            csv_buff = open_fw(engine.format_filename(csv_observation))
            csv_writer = open_csvw(csv_buff)

            csv_writer.writerow(header_values)

            # Parse xml to read data
            file_read = ""
            fname = DATA_WRITE_PATH.strip('{dataset}') + 'NPN/' + xml_file_name
            with open(fname, 'r') as fp1:
                file_read = fp1.read()

            root = ET.fromstring(file_read)

            for elements in root:
                index_map = {val: i for i, val in enumerate(header_values)}
                diction = sorted(elements.attrib.items(), key=lambda pair: index_map[pair[0]])
                csv_writer.writerow([x[1] for x in diction])

            csv_buff.close()
            start_date = to_date + datetime.timedelta(1)

        # Create table
        table = Table('obsercations', delimiter=',', pk='record_id', contains_pk=True)
        table.columns = columns
        engine.table = table
        engine.create_table()
        for data_file in csv_files:
            engine.insert_data_from_file(engine.find_file(data_file))
        return engine
Esempio n. 3
0
    def download(self, engine=None, debug=False):
        Script.download(self, engine, debug)

        engine = self.engine
        csv_files = []
        request_src = "http://www.data-retriever.org/"
        base_url = "http://www.usanpn.org/npn_portal/observations/getObservations.xml?start_date={startYear}&end_date={endYear_date}&request_src={request_src}"
        header_values = [
            "observation_id", "update_datetime", "site_id", "latitude",
            "longitude", "elevation_in_meters", "state", "species_id", "genus",
            "species", "common_name", "kingdom", "individual_id",
            "phenophase_id", "phenophase_description", "observation_date",
            "day_of_year", "phenophase_status", "intensity_category_id",
            "intensity_value", "abundance_value"
        ]

        columns = [
            ("record_id", ("pk-auto", )),
            ("observation_id",
             ("int", )),  # subsequently refered to as "status record"
            ("update_datetime", ("char", )),
            ("site_id", ("int", )),
            ("latitude", ("double", )),
            ("longitude", ("double", )),
            ("elevation_in_meters", ("char", )),
            ("state", ("char", )),
            ("species_id", ("int", )),
            ("genus", ("char", )),
            ("species", ("char", )),
            ("common_name", ("char", )),
            ("kingdom", ("char", )),  # skip kingdom
            ("individual_id", ("char", )),
            ("phenophase_id", ("int", )),
            ("phenophase_description", ("char", )),
            ("observation_date", ("char", )),
            ("day_of_year", ("char", )),
            ("phenophase_status", ("char", )),
            ("intensity_category_id", ("char", )),
            ("intensity_value", ("char", )),
            ("abundance_value", ("char", ))
        ]

        start_date = datetime.date(2009, 1, 1)
        end_date = datetime.date.today()

        while start_date < end_date:
            to_date = start_date + datetime.timedelta(90)
            if to_date >= end_date:
                data_url = base_url.format(startYear=str(start_date),
                                           endYear_date=str(end_date),
                                           request_src=request_src)
            else:
                data_url = base_url.format(startYear=str(start_date),
                                           endYear_date=str(to_date),
                                           request_src=request_src)

            xml_file_name = '{}'.format(start_date) + ".xml"
            engine.download_file(data_url, xml_file_name)

            # Create csv files for 3 months
            csv_observation = '{}'.format(start_date) + ".csv"
            csv_files.append(csv_observation)
            csv_buff = open_fw(engine.format_filename(csv_observation))
            csv_writer = open_csvw(csv_buff)

            csv_writer.writerow(header_values)

            # Parse xml to read data
            file_read = ""
            fname = DATA_WRITE_PATH.strip('{dataset}') + 'NPN/' + xml_file_name
            with open(fname, 'r') as fp1:
                file_read = fp1.read()

            root = ET.fromstring(file_read)

            for elements in root:
                index_map = {val: i for i, val in enumerate(header_values)}
                diction = sorted(elements.attrib.items(),
                                 key=lambda pair: index_map[pair[0]])
                csv_writer.writerow([x[1] for x in diction])

            csv_buff.close()
            start_date = to_date + datetime.timedelta(1)

        # Create table
        table = Table('obsercations',
                      delimiter=',',
                      pk='record_id',
                      contains_pk=True)
        table.columns = columns
        engine.table = table
        engine.create_table()
        for data_file in csv_files:
            engine.insert_data_from_file(engine.find_file(data_file))
        return engine
Esempio n. 4
0
 def format_data_dir(self):
     """Return correctly formatted raw data directory location."""
     if self.data_path:
         return os.path.join(self.data_path, self.script.name)
     return DATA_WRITE_PATH.format(dataset=self.script.name)
Esempio n. 5
0
 def format_data_dir(self):
     """Return correctly formatted raw data directory location."""
     return DATA_WRITE_PATH.format(dataset=self.script.name)