def svr_rbf(self): clf = svm.SVR(kernel='rbf', C=100, gamma=0.1, epsilon=.1) clf.fit(self.X_train, self.y_train) y_pred = clf.predict(self.X_test) dict = {} set_metrics(y_pred, self.y_test, dict) return dict
def linear(self): clf = LinearRegression() clf.fit(self.X_train, self.y_train) y_pred = clf.predict(self.X_test) dict = {} set_metrics(y_pred, self.y_test, dict) return dict
def svr(self): clf = svm.SVR() clf.fit(self.X_train, self.y_train) y_pred = clf.predict(self.X_test) dict = {} set_metrics(y_pred, self.y_test, dict) return dict
def pca(self): train_img, test_img, train_lbl, test_lbl = self.X_train, self.X_test, self.y_train, self.y_test from sklearn.preprocessing import StandardScaler #scaler = StandardScaler() # Fit on training set only. #scaler.fit(train_img) # Apply transform to both the training set and the test set. #train_img = scaler.transform(train_img) #test_img = scaler.transform(test_img) from sklearn.decomposition import PCA pca = PCA(.95) pca.fit(train_img) train_img = pca.transform(train_img) test_img = pca.transform(test_img) # from sklearn.linear_model import LogisticRegression #logisticRegr = LogisticRegression(solver = 'lbfgs') #logisticRegr.fit(train_img, train_lbl) #y_pred = logisticRegr.predict(test_img) from sklearn.tree import DecisionTreeRegressor r = DecisionTreeRegressor(random_state=0) r.fit(train_img, train_lbl) y_pred = r.predict(test_img) dict = {} set_metrics(y_pred, test_lbl, dict) return dict
def bayes(self): clf = BayesianRidge(compute_score=True) clf.fit(self.X_train, self.y_train) y_pred = clf.predict(self.X_test) dict = {} set_metrics(y_pred, self.y_test, dict) return dict
def ard(self): clf = linear_model.ARDRegression() clf.fit(self.X_train, self.y_train) y_pred = clf.predict(self.X_test) dict = {} set_metrics(y_pred, self.y_test, dict) return dict
def svr_linear(self): clf = svm.SVR(kernel='linear', C=100, gamma='auto') clf.fit(self.X_train, self.y_train) y_pred = clf.predict(self.X_test) dict = {} set_metrics(y_pred, self.y_test, dict) return dict
def dec_tree_2(self): from sklearn.tree import DecisionTreeRegressor r = DecisionTreeRegressor(random_state=0) r.fit(self.X_train, self.y_train) y_pred = r.predict(self.X_test) dict = {} set_metrics(y_pred, self.y_test, dict) return dict
def random_forest(self): from sklearn.ensemble import RandomForestRegressor from sklearn.datasets import make_regression regr = RandomForestRegressor(max_depth=2, random_state=0) regr.fit(self.X_train, self.y_train) y_pred = regr.predict(self.X_test) dict = {} set_metrics(y_pred, self.y_test, dict) return dict
def svr_poly(self): clf = svm.SVR(kernel='poly', C=100, gamma='auto', degree=3, epsilon=.1, coef0=1) clf.fit(self.X_train, self.y_train) y_pred = clf.predict(self.X_test) dict = {} set_metrics(y_pred, self.y_test, dict) return dict
def boost(self): import xgboost as xgb xg_reg = xgb.XGBRegressor(objective='reg:linear', colsample_bytree=0.3, learning_rate=0.1, max_depth=5, alpha=10, n_estimators=10) xg_reg.fit(self.X_train, self.y_train) y_pred = xg_reg.predict(self.X_test) dict = {} set_metrics(y_pred, self.y_test, dict) return dict
def lstm(self): from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM look_back = 1 model = Sequential() model.add(LSTM(4, input_shape=(1, look_back))) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(self.X_train, self.y_train, epochs=100, batch_size=1, verbose=2) y_pred = model.predict(self.X_test) dict = {} set_metrics(y_pred, self.y_test, dict) return dict