import pickle # File with predictions stream = "fusion" filter_type = "avg_fovea" filename = "thresholds/context_fusion/predictions_" + stream + "_" + filter_type + "_1809281055.pickle" with open(filename, 'rb') as handle: predictions = pickle.load(handle) root_dir = '../../data/AVA/files/' # Load groundtruth (test or val set) # Load list of action classes and separate them (from utils_stream) classes = utils.get_AVA_classes(root_dir + 'ava_action_list_custom.csv') partition = get_AVA_set(classes=classes, filename=root_dir + "AVA_Val_Custom_Corrected.csv", soft_sigmoid=True) test_splits = utils.make_chunks(original_list=partition, size=len(partition), chunk_size=2**11) # Voting thresh_values = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] for thresh in thresh_values: print("Testing threshold " + str(thresh) + " ") pose_votes = {} obj_votes = {} human_votes = {} for row in partition: row = row.split("@")
def main(): # root_dir = '../../../AVA2.1/' # root_dir for the files root_dir = '../../data/AVA/files/' # Erase previous models from GPU memory K.clear_session() # Load list of action classes and separate them classes = utils.get_AVA_classes(root_dir + 'ava_action_list_custom.csv') # Parameters for training params = { 'dim': (224, 224), 'batch_size': 32, 'n_classes': len(classes['label_id']), 'n_channels': 3, 'shuffle': False, 'nb_epochs': 200, 'model': 'inceptionv3', 'email': True, 'freeze_all': True, 'conv_fusion': False, 'train_chunk_size': 2**12, 'validation_chunk_size': 2**12 } soft_sigmoid = True minValLoss = 9999990.0 # Get ID's and labels from the actual dataset partition = {} partition['train'] = get_AVA_set( classes=classes, filename=root_dir + "AVA_Train_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) # IDs for training partition['validation'] = get_AVA_set( classes=classes, filename=root_dir + "AVA_Val_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) # IDs for validation # Labels labels_train = get_AVA_labels(classes, partition, "train", filename=root_dir + "AVA_Train_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) labels_val = get_AVA_labels(classes, partition, "validation", filename=root_dir + "AVA_Val_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) # Create + compile model, load saved weights if they exist saved_weights = None # saved_weights = "../models/rgbextra_gauss_resnet50_1807250030.hdf5" model, keras_layer_names = rgb_create_model( classes=classes['label_id'], soft_sigmoid=soft_sigmoid, model_name=params['model'], freeze_all=params['freeze_all'], conv_fusion=params['conv_fusion']) model = compile_model(model, soft_sigmoid=soft_sigmoid) # TODO Experiment: 1. no initialization, 2. ucf initialization 3. kinetics initialization initialization = True # Set to True to use initialization kinetics_weights = None ucf_weights = "a" if saved_weights is not None: model.load_weights(saved_weights) else: if initialization is True: if ucf_weights is None: print("Loading MConvNet weights: ") if params['model'] == "resnet50": ucf_weights = utils.loadmat( "../models/ucf_matconvnet/ucf101-img-resnet-50-split1.mat" ) utils.convert_resnet(model, ucf_weights) model.save( "../models/ucf_keras/keras-ucf101-rgb-resnet50-newsplit.hdf5" ) if kinetics_weights is None: if params['model'] == "inceptionv3": print("Loading Keras weights: ") keras_weights = [ "../models/kinetics_keras/tsn_rgb_params_names.pkl", "../models/kinetics_keras/tsn_rgb_params.pkl" ] utils.convert_inceptionv3(model, keras_weights, keras_layer_names) model.save( "../models/kinetics_keras/keras-kinetics-rgb-inceptionv3.hdf5" ) # Try to train on more than 1 GPU if possible # try: # print("Trying MULTI-GPU") # model = multi_gpu_model(model) print("Training set size: " + str(len(partition['train']))) # Make spltis train_splits = utils.make_chunks(original_list=partition['train'], size=len(partition['train']), chunk_size=params['train_chunk_size']) val_splits = utils.make_chunks(original_list=partition['validation'], size=len(partition['validation']), chunk_size=params['validation_chunk_size']) time_str = time.strftime("%y%m%d%H%M", time.localtime()) # TODO Don't forget to change your names :) filter_type = "gauss" bestModelPath = "../models/rgb_kininit_" + filter_type + \ "_" + params['model'] + "_" + time_str + ".hdf5" traincsvPath = "../loss_acc_plots/rgb_kininit_train_" + filter_type + \ "_plot_" + params['model'] + "_" + time_str + ".csv" valcsvPath = "../loss_acc_plots/rgb_kininit_val_" + filter_type + \ "_plot_" + params['model'] + "_" + time_str + ".csv" with tf.device('/gpu:0'): # NOTE Not using multi gpu for epoch in range(params['nb_epochs']): epoch_chunks_count = 0 for trainIDS in train_splits: # Load and train start_time = timeit.default_timer() # ----------------------------------------------------------- x_val = y_val_pose = y_val_object = y_val_human = x_train = y_train_pose = y_train_object = y_train_human = None x_train, y_train_pose, y_train_object, y_train_human = load_split( trainIDS, labels_train, params['dim'], params['n_channels'], "train", filter_type, soft_sigmoid=soft_sigmoid) y_t = [] y_t.append( to_categorical(y_train_pose, num_classes=utils.POSE_CLASSES)) y_t.append( utils.to_binary_vector(y_train_object, size=utils.OBJ_HUMAN_CLASSES, labeltype='object-human')) y_t.append( utils.to_binary_vector(y_train_human, size=utils.HUMAN_HUMAN_CLASSES, labeltype='human-human')) history = model.fit(x_train, y_t, batch_size=params['batch_size'], epochs=1, verbose=0) utils.learning_rate_schedule(model, epoch, params['nb_epochs']) # TODO Repeat samples of unrepresented classes? # ------------------------------------------------------------ elapsed = timeit.default_timer() - start_time print("Epoch " + str(epoch) + " chunk " + str(epoch_chunks_count) + " (" + str(elapsed) + ") acc[pose,obj,human] = [" + str(history.history['pred_pose_categorical_accuracy']) + "," + str(history. history['pred_obj_human_categorical_accuracy']) + "," + str(history. history['pred_human_human_categorical_accuracy']) + "] loss: " + str(history.history['loss'])) with open(traincsvPath, 'a') as f: writer = csv.writer(f) avg_acc = ( history.history['pred_pose_categorical_accuracy'][0] + history.history['pred_obj_human_categorical_accuracy'] [0] + history.history[ 'pred_human_human_categorical_accuracy'][0]) / 3 writer.writerow([ str(avg_acc), history.history['pred_pose_categorical_accuracy'], history.history['pred_obj_human_categorical_accuracy'], history. history['pred_human_human_categorical_accuracy'], history.history['loss'] ]) epoch_chunks_count += 1 # Load val_data print("Validating data: ") # global_loss, pose_loss, object_loss, human_loss, pose_acc, object_acc, human_acc loss_acc_list = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] for valIDS in val_splits: x_val = y_val_pose = y_val_object = y_val_human = x_train = y_train_pose = y_train_object = y_train_human = None x_val, y_val_pose, y_val_object, y_val_human = load_split( valIDS, labels_val, params['dim'], params['n_channels'], "val", filter_type, soft_sigmoid=soft_sigmoid) y_v = [] y_v.append( to_categorical(y_val_pose, num_classes=utils.POSE_CLASSES)) y_v.append( utils.to_binary_vector(y_val_object, size=utils.OBJ_HUMAN_CLASSES, labeltype='object-human')) y_v.append( utils.to_binary_vector(y_val_human, size=utils.HUMAN_HUMAN_CLASSES, labeltype='human-human')) vglobal_loss, vpose_loss, vobject_loss, vhuman_loss, vpose_acc, vobject_acc, vhuman_acc = model.evaluate( x_val, y_v, batch_size=params['batch_size']) loss_acc_list[0] += vglobal_loss loss_acc_list[1] += vpose_loss loss_acc_list[2] += vobject_loss loss_acc_list[3] += vhuman_loss loss_acc_list[4] += vpose_acc loss_acc_list[5] += vobject_acc loss_acc_list[6] += vhuman_acc # Average over all validation chunks loss_acc_list = [x / len(val_splits) for x in loss_acc_list] with open(valcsvPath, 'a') as f: writer = csv.writer(f) # We consider accuracy as the average accuracy over the three # types of accuracy acc = (loss_acc_list[4] + loss_acc_list[5] + loss_acc_list[6]) / 3 writer.writerow([ str(acc), loss_acc_list[4], loss_acc_list[5], loss_acc_list[6], loss_acc_list[0], loss_acc_list[1], loss_acc_list[2], loss_acc_list[3] ]) if loss_acc_list[0] < minValLoss: print("New best loss " + str(loss_acc_list[0])) model.save(bestModelPath) minValLoss = loss_acc_list[0] if params['email']: utils.sendemail(from_addr='*****@*****.**', to_addr_list=['*****@*****.**'], subject='Finished training RGB-stream ', message='Training RGB with following params: ' + str(params), login='******', password='******')
def main(): # root_dir = '../../../AVA2.1/' # root_dir for the files root_dir = '../../data/AVA/files/' # Erase previous models from GPU memory K.clear_session() # Load list of action classes and separate them classes = utils.get_AVA_classes(root_dir + 'ava_action_list_custom.csv') # Parameters for training params = { 'dim': (224, 224), 'batch_size': 32, 'n_classes': len(classes['label_id']), 'n_channels': 3, 'shuffle': False, 'nb_epochs': 200, 'model': 'resnet50', 'email': True, 'freeze_all': True, 'conv_fusion': False, 'train_chunk_size': 2**12, 'validation_chunk_size': 2**12 } soft_sigmoid = True minValLoss = 9999990.0 # Get ID's and labels from the actual dataset partition = {} partition['train'] = get_AVA_set( classes=classes, filename=root_dir + "AVA_Train_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) # IDs for training partition['validation'] = get_AVA_set( classes=classes, filename=root_dir + "AVA_Val_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) # IDs for validation # Labels labels_train = get_AVA_labels(classes, partition, "train", filename=root_dir + "AVA_Train_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) labels_val = get_AVA_labels(classes, partition, "validation", filename=root_dir + "AVA_Val_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) # http://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html # Logistic Regression in Rare Events Data, Gary King, Langche Zeng # Keras needs a dict though # From documentation: class_weight: Optional dictionary mapping class indices (integers) to a weight (float) value, used for weighting the loss function (during training only). # This can be useful to tell the model to "pay more attention" to samples from an under-represented class. y = labels_to_numpy(labels_train) penalizing_method = 'balanced' mu = 0.7 # penalizing_method = 'weighted_log' class_weights = np.zeros(30) for i in y: class_weights[i] += 1 max_class = max(class_weights) for i in range(len(class_weights)): if class_weights[i] != 0.0: if penalizing_method == 'balanced': print( str(i) + " " + str(class_weights[i]) + " " + str(len(y) / (class_weights[i]))) #class_weights[i] = len(y) / (class_weights[i]) class_weights[i] = max_class / (class_weights[i]) elif penalizing_method == 'weighted_log': print( str(i) + " " + str(class_weights[i]) + " " + str(math.log(mu * len(y) / (class_weights[i])))) class_weights[i] = math.log(mu * len(y) / (class_weights[i])) else: print(str(i) + " " + str(class_weights[i]) + " inf ") class_weights[i] = 0.0 g = sns.barplot(x=[str(i) for i in range(len(class_weights))], y=class_weights) plt.xticks(rotation=-90) plt.title("Class weights " + penalizing_method) plt.grid(True) plt.show() class_dictionary = {} print(len(class_weights)) for i in range(len(class_weights)): class_dictionary[i] = class_weights[i] print(class_dictionary) it = iter(class_weights) seclist = [ utils.POSE_CLASSES, utils.OBJ_HUMAN_CLASSES, utils.HUMAN_HUMAN_CLASSES ] class_lists = [list(islice(it, 0, i)) for i in seclist] print(class_lists) # Create + compile model, load saved weights if they exist saved_weights = None # saved_weights = "../models/rgbextra_gauss_resnet50_1807250030.hdf5" model, keras_layer_names = rgb_create_model( classes=classes['label_id'], soft_sigmoid=soft_sigmoid, model_name=params['model'], freeze_all=params['freeze_all'], conv_fusion=params['conv_fusion']) model = compile_model(model, soft_sigmoid=soft_sigmoid) # TODO Experiment: 1. no initialization, 2. ucf initialization 3. kinetics initialization initialization = True # Set to True to use initialization kinetics_weights = "" ucf_weights = "../models/ucf_keras/keras-ucf101-rgb-resnet50-newsplit.hdf5" if saved_weights is not None: model.load_weights(saved_weights) else: if initialization is True: if ucf_weights is None: print("Loading MConvNet weights: ") if params['model'] == "resnet50": ucf_weights = utils.loadmat( "../models/ucf_matconvnet/ucf101-img-resnet-50-split1.mat" ) utils.convert_resnet(model, ucf_weights) model.save( "../models/ucf_keras/keras-ucf101-rgb-resnet50-newsplit.hdf5" ) if kinetics_weights is None: if params['model'] == "inceptionv3": print("Loading Keras weights: ") keras_weights = [ "../models/kinetics_keras/tsn_rgb_params_names.pkl", "../models/kinetics_keras/tsn_rgb_params.pkl" ] utils.convert_inceptionv3(model, keras_weights, keras_layer_names) model.save( "../models/kinetics_keras/keras-kinetics-rgb-inceptionv3.hdf5" ) # Try to train on more than 1 GPU if possible # try: # print("Trying MULTI-GPU") # model = multi_gpu_model(model) print("Training set size: " + str(len(partition['train']))) # Make spltis train_splits = utils.make_chunks(original_list=partition['train'], size=len(partition['train']), chunk_size=params['train_chunk_size']) val_splits = utils.make_chunks(original_list=partition['validation'], size=len(partition['validation']), chunk_size=params['validation_chunk_size']) time_str = time.strftime("%y%m%d%H%M", time.localtime()) # TODO Don't forget to change your names :) filter_type = "gauss" bestModelPath = "../models/rgb_weightsfinal_" + filter_type + "_" + params[ 'model'] + "_" + time_str + ".hdf5" traincsvPath = "../loss_acc_plots/rgb_weightsfinal_train_" + filter_type + "_plot_" + params[ 'model'] + "_" + time_str + ".csv" valcsvPath = "../loss_acc_plots/rgb_weightsfinal_val_" + filter_type + "_plot_" + params[ 'model'] + "_" + time_str + ".csv" for epoch in range(params['nb_epochs']): epoch_chunks_count = 0 for trainIDS in train_splits: # Load and train start_time = timeit.default_timer() # ----------------------------------------------------------- x_val = y_val_pose = y_val_object = y_val_human = x_train = y_train_pose = y_train_object = y_train_human = None x_train, y_train_pose, y_train_object, y_train_human = load_split( trainIDS, labels_train, params['dim'], params['n_channels'], "train", filter_type, soft_sigmoid=soft_sigmoid) y_t = [] y_t.append( to_categorical(y_train_pose, num_classes=utils.POSE_CLASSES)) y_t.append( utils.to_binary_vector(y_train_object, size=utils.OBJ_HUMAN_CLASSES, labeltype='object-human')) y_t.append( utils.to_binary_vector(y_train_human, size=utils.HUMAN_HUMAN_CLASSES, labeltype='human-human')) history = model.fit(x_train, y_t, class_weight=class_lists, batch_size=params['batch_size'], epochs=1, verbose=0) utils.learning_rate_schedule(model, epoch, params['nb_epochs']) # ------------------------------------------------------------ elapsed = timeit.default_timer() - start_time print( "Epoch " + str(epoch) + " chunk " + str(epoch_chunks_count) + " (" + str(elapsed) + ") acc[pose,obj,human] = [" + str(history.history['pred_pose_categorical_accuracy']) + "," + str(history.history['pred_obj_human_categorical_accuracy']) + "," + str(history.history['pred_human_human_categorical_accuracy']) + "] loss: " + str(history.history['loss'])) with open(traincsvPath, 'a') as f: writer = csv.writer(f) avg_acc = ( history.history['pred_pose_categorical_accuracy'][0] + history.history['pred_obj_human_categorical_accuracy'][0] + history.history['pred_human_human_categorical_accuracy'][0] ) / 3 writer.writerow([ str(avg_acc), history.history['pred_pose_categorical_accuracy'], history.history['pred_obj_human_categorical_accuracy'], history.history['pred_human_human_categorical_accuracy'], history.history['loss'] ]) epoch_chunks_count += 1 # Load val_data print("Validating data: ") # global_loss, pose_loss, object_loss, human_loss, pose_acc, object_acc, human_acc loss_acc_list = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] for valIDS in val_splits: x_val = y_val_pose = y_val_object = y_val_human = x_train = y_train_pose = y_train_object = y_train_human = None x_val, y_val_pose, y_val_object, y_val_human = load_split( valIDS, labels_val, params['dim'], params['n_channels'], "val", filter_type, soft_sigmoid=soft_sigmoid) y_v = [] y_v.append( to_categorical(y_val_pose, num_classes=utils.POSE_CLASSES)) y_v.append( utils.to_binary_vector(y_val_object, size=utils.OBJ_HUMAN_CLASSES, labeltype='object-human')) y_v.append( utils.to_binary_vector(y_val_human, size=utils.HUMAN_HUMAN_CLASSES, labeltype='human-human')) # NOTE Can't have weights on validation vglobal_loss, vpose_loss, vobject_loss, vhuman_loss, vpose_acc, vobject_acc, vhuman_acc = model.evaluate( x_val, y_v, batch_size=params['batch_size']) loss_acc_list[0] += vglobal_loss loss_acc_list[1] += vpose_loss loss_acc_list[2] += vobject_loss loss_acc_list[3] += vhuman_loss loss_acc_list[4] += vpose_acc loss_acc_list[5] += vobject_acc loss_acc_list[6] += vhuman_acc # Average over all validation chunks loss_acc_list = [x / len(val_splits) for x in loss_acc_list] with open(valcsvPath, 'a') as f: writer = csv.writer(f) # We consider accuracy as the average accuracy over the three # types of accuracy acc = (loss_acc_list[4] + loss_acc_list[5] + loss_acc_list[6]) / 3 writer.writerow([ str(acc), loss_acc_list[4], loss_acc_list[5], loss_acc_list[6], loss_acc_list[0], loss_acc_list[1], loss_acc_list[2], loss_acc_list[3] ]) if loss_acc_list[0] < minValLoss: print("New best loss " + str(loss_acc_list[0])) model.save(bestModelPath) minValLoss = loss_acc_list[0] if params['email']: utils.sendemail( from_addr='*****@*****.**', to_addr_list=['*****@*****.**'], subject='Finished training RGB-stream with class_weights ' + penalizing_method, message='Training RGB with following params: ' + str(params), login='******', password='******')
def main(): GPU = False CPU = True num_cores = 8 if GPU: num_GPU = 1 num_CPU = 1 if CPU: num_CPU = 1 num_GPU = 0 # config = tf.ConfigProto(intra_op_parallelism_threads=num_cores, inter_op_parallelism_threads=num_cores, allow_soft_placement=True, # device_count={'CPU': num_CPU, 'GPU': num_GPU}) # session = tf.Session(config=config) # K.set_session(session) # root_dir = '../../../AVA2.1/' # root_dir for the files root_dir = '../../data/AVA/files/' # Load list of action classes and separate them classes = utils.get_AVA_classes(root_dir + 'ava_action_list_custom.csv') # Parameters for training params = { 'dim': (224, 224), 'batch_size': 32, 'n_classes': len(classes['label_id']), 'n_channels': 3, 'shuffle': False, 'nb_epochs': 200, 'model': 'resnet50', 'email': True, 'freeze_all': True, 'conv_fusion': False, 'train_chunk_size': 2**12, 'validation_chunk_size': 2**12 } soft_sigmoid = True minValLoss = 9999990.0 print(classes) oversampling_train, oversampling_train_classes = oversampling( classes, root_dir, "AVA_Train_Custom_Corrected.csv") oversampling_val, oversampling_val_classes = oversampling( classes, root_dir, "AVA_Val_Custom_Corrected.csv") undersampling_train, undersampling_train_classes = undersampling( classes, root_dir, "AVA_Train_Custom_Corrected.csv", oversampling_train_classes) undersampling_val, undersampling_val_classes = undersampling( classes, root_dir, "AVA_Val_Custom_Corrected.csv", oversampling_val_classes) partition = {} partition['train'] = get_AVA_set( classes=classes, filename=root_dir + "AVA_Train_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) # IDs for training partition['validation'] = get_AVA_set( classes=classes, filename=root_dir + "AVA_Val_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) # IDs for validation print(len(partition['train'])) undersampling_train = list(set(undersampling_train)) print(len(oversampling_train)) print(len(undersampling_train)) print(len(undersampling_train + oversampling_train)) print(1.0 * len(partition['train'] + oversampling_train) / len(partition['train'])) bestsample = undersampling_train + oversampling_train sys.exit(0) # Labels # labels_train = get_AVA_labels(classes, partition, "train", filename=root_dir + "AVA_Train_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) # labels_val = get_AVA_labels(classes, partition, "validation", filename=root_dir + "AVA_Val_Custom_Corrected.csv", soft_sigmoid=soft_sigmoid) original_train_size = len(partition['train']) print("Training set size pre augmentation: " + str(original_train_size)) partition['train'] = partition['train'] + aug_train print("Training set size pos augmentation: " + str(len(partition['train'])) + " --> " + str(100.0 * (len(partition['train']) - original_train_size) / original_train_size) + " % increase") original_val_size = len(partition['validation']) print("validation set size pre augmentation: " + str(original_train_size)) partition['validation'] = partition['validation'] + aug_train print("Validation set size pos augmentation: " + str(len(partition['validation'])) + " --> " + str(100.0 * (len(partition['validation']) - original_val_size) / original_val_size) + " % increase") img = cv2.imread( "/media/pedro/actv-ssd/gauss_train/-5KQ66BBWC4_902_0.077_0.151_0.283_0.811/frames1.jpg" ) print(img.shape) if random.random() < 0.5: flip_img = np.fliplr(img) crop_rand_val = random.randrange(0, 5, 1) / 10.0 scale_rand_val = random.randrange(7, 8, 1) / 10.0 # print(crop_rand_val) # print(scale_rand_val) seq = iaa.Sequential( [ # horizontal flips iaa.Scale((scale_rand_val, 1.0)), iaa.CropAndPad(percent=(0, crop_rand_val), pad_mode=["edge"]) # random crops ], random_order=True) # apply augmenters in random order flipped = seq.augment_image(flip_img) plt.imshow(flipped) plt.show()
def main(): K.clear_session() root_dir = '../../data/AVA/files/' # Load list of action classes and separate them (from utils_stream) classes = utils.get_AVA_classes(root_dir + 'ava_action_list_custom.csv') # Parameters for training (batch size 32 is supposed to be the best?) params = {'dim': (224, 224), 'batch_size': 32, 'n_classes': len(classes['label_id']), 'n_channels': 3, 'shuffle': False, 'nb_epochs': 200, 'model': 'resnet50', 'email': False, 'freeze_all': True, 'conv_fusion': False} filter_type = "gauss" split = "test" # Get validation set from directory partition = {} partition['test'] = get_AVA_set(classes=classes, filename=root_dir + "AVA_" + split.title() + "_Custom_Corrected.csv", soft_sigmoid=True) time_str = time.strftime("%y%m%d%H%M", time.localtime()) result_csv = "test_outputs/augmentation/output_test_weightsnew_" + filter_type + "_" + time_str + ".csv" # Load trained model # Gauss # rgb_weights = "../models/rgb_" + filter_type + "_resnet50_1806290918.hdf5" # rgb_weights = "../models/rgbextra_" + filter_type + "_resnet50_1807250030.hdf5" #rgb_weights = "../models/rgb_augsamplingweightsnoaug_gauss_resnet50_1809242359.hdf5" rgb_weights = "../models/rgb_weightsnew_gauss_resnet50_1809281516.hdf5" # Crop # rgb_weights = "../models/rgb_" + filter_type + "_resnet50_1806300210.hdf5" # Fovea # rgb_weights = "../models/rgb_" + filter_type + "_resnet50_1806301953.hdf5" # RGB only # rgb_weights = "../models/rgb_" + filter_type + "_resnet50_1807060914.hdf5" model, keras_layer_names = rgb_create_model(classes=classes['label_id'], soft_sigmoid=True, model_name=params['model'], freeze_all=params['freeze_all'], conv_fusion=params['conv_fusion']) model = compile_model(model, soft_sigmoid=True) model.load_weights(rgb_weights) print("Test set size: " + str(len(partition['test']))) # Load chunks test_splits = utils.make_chunks(original_list=partition['test'], size=len(partition['test']), chunk_size=2**11) # Test directories where pre-processed test files are rgb_dir = "/media/pedro/actv-ssd/" + filter_type + "_" + split + "/" test_chunks_count = 0 pose_votes = {} obj_votes = {} human_votes = {} for row in partition['test']: row = row.split("@") i = row[0] + "@" + row[1] + "@" + str(row[2]) + "@" + str(row[3]) + "@" + str(row[4]) + "@" + str(row[5]) pose_votes[i] = np.zeros(utils.POSE_CLASSES) obj_votes[i] = np.zeros(utils.OBJ_HUMAN_CLASSES) human_votes[i] = np.zeros(utils.HUMAN_HUMAN_CLASSES) store_predictions = True test_predictions = [] with tf.device('/gpu:0'): for testIDS in test_splits: # TODO Technically it shouldnt return labels here (these are ground truth) x_test_rgb, y_test_pose, y_test_object, y_test_human = load_split(testIDS, None, params['dim'], params['n_channels'], split, filter_type, soft_sigmoid=True, train=False) print("Predicting on chunk " + str(test_chunks_count) + "/" + str(len(test_splits))) predictions = model.predict(x_test_rgb, batch_size=params['batch_size'], verbose=1) if store_predictions is True: # print(predictions[0][0]) # print(predictions[1][0]) # print(predictions[2][0]) # tarr = np.hstack((np.vstack(predictions[0]), np.vstack(predictions[1]), np.vstack(predictions[2]))) test_predictions.append(predictions) # Convert predictions to readable output and perform majority voting voting.pred2classes(testIDS, predictions, pose_votes, obj_votes, human_votes, thresh=0.4) test_chunks_count += 1 if store_predictions is True: #tp = np.vstack(test_predictions) # print(tp.shape) with open("thresholds/rgb_gauss/predictions_weightsnew_" + filter_type + "_" + time_str + ".pickle", 'wb') as handle: pickle.dump(test_predictions, handle, protocol=pickle.HIGHEST_PROTOCOL) # When you're done getting all the votes, write output csv with open(result_csv, "a") as output_file: for key in pose_votes: idx = key.split("@") actions = [] pv = pose_votes[key] pose_vote = pv.argmax(axis=0) + 1 actions.append(pose_vote) # Get 3 top voted object ov = obj_votes[key] top_three_obj_votes = ov.argsort()[-3:][::-1] + utils.POSE_CLASSES + 1 for t in top_three_obj_votes: if t != 0: # Often there might only be two top voted or one actions.append(t) # Get 3 top voted human hv = human_votes[key] top_three_human_votes = hv.argsort()[-3:][::-1] + utils.POSE_CLASSES + utils.OBJ_HUMAN_CLASSES + 1 for t in top_three_human_votes: if t != 0: # Often there might only be two top voted or one actions.append(t) video_name = idx[0] timestamp = idx[1] bb_topx = idx[2] bb_topy = idx[3] bb_botx = idx[4] bb_boty = idx[5] for a in actions: line = video_name + "," + timestamp + "," + bb_topx + "," + bb_topy + "," + bb_botx + "," + bb_boty + "," + str(a) output_file.write("%s\n" % line) if params['email']: utils.sendemail(from_addr='*****@*****.**', to_addr_list=['*****@*****.**'], subject='Finished prediction for rgb ' + filter_type, message='Testing rgb with following params: ' + str(params), login='******', password='******')