Esempio n. 1
0
def track_plate(sequence, step=1, stand=False):
    """
    ##Obsolete
    warning: since implementation find_plate changed fitting direction => NOT WORKING
    """
    import matplotlib.pyplot as plt

    if isinstance(sequence, basestring):
        import glob
        sequence = glob.glob(sequence)

    plt.ion()
    plt.gray()
    for f in sequence:
        img = _pad(_Image(f, color='gray', format='f'),
                   200,
                   200,
                   fill_value='nearest')
        H = find_plate(img,
                       border=0.06,
                       plate_width=1200,
                       fit='homography',
                       white_stand=stand)
        im = _geo.transform(img, H, ((0, 1200 + 1, step), (0, 1200 + 1, step)))
        plt.imshow(im, hold=0)

        k = raw_input(" 'q' to quit':")
        if k == 'q': break
Esempio n. 2
0
 def load_root_mask(filename):
     from ast import literal_eval
     import PIL
     info = PIL.Image.open(out_mask).info
     bbox = literal_eval(info['bbox'])
     bbox = map(lambda x: slice(*x), bbox)
     return _Image(filename, dtype=bool), bbox
Esempio n. 3
0
def load_image(filename, image_roi=None, *args, **kargs):
    image,op = _normalize_image(_Image(filename,dtype='f',color='gray'))
    image.__serializer__.post_op = op
    if image_roi:
        if isinstance(image_roi,slice):
            roi = [roi]*image.ndim
        image = image[roi]
    return image
Esempio n. 4
0
    def find_leaves(filename,
                    mask,
                    image,
                    plant_number,
                    root_radius=3,
                    leaf_height=[0, .2],
                    sort=True):
        seed_map = _detect_leaves(mask=mask,
                                  image=image,
                                  leaf_number=plant_number,
                                  root_radius=root_radius,
                                  leaf_height=leaf_height,
                                  sort=sort)  ##
        _Image(seed_map).save(out_seed, dtype='uint8',
                              scale=25)  ## max 10 plants

        return seed_map
Esempio n. 5
0
def detect_sift(image):
    image = _Image(image, dtype='uint8',
                   color='gray')  # load and/or convert if necessary

    sift = cv2.SIFT()
    kp, des = sift.detectAndCompute(image, None)

    return KeyPoint(kp), des
Esempio n. 6
0
    def load_circle(filename):
        from ast import literal_eval
        import PIL
        info = PIL.Image.open(filename).info
        cind = literal_eval(info['circles'])
        rad = literal_eval(info['radius'])
        cmask = _Image(filename, dtype='uint8', scale=1)

        return cmask, cind, rad
Esempio n. 7
0
    def segment_image(filename,
                      image,
                      mask,
                      root_max_radius=15,
                      min_dimension=50,
                      smooth=1):
        #mask = _nd.binary_erosion(mask==mask.max(), iterations=
        mask = mask == mask.max()

        # find the bounding box, and crop image and mask
        bbox = _nd.find_objects(mask)[0]
        mask = mask[bbox]
        img = image[bbox]

        if smooth:
            smooth_img = _nd.gaussian_filter(img * mask, sigma=smooth)
            smooth_img /= _np.maximum(
                _nd.gaussian_filter(mask.astype('f'), sigma=smooth), 2**-10)
            img[mask] = smooth_img[mask]

        # background removal
        _print_state(verbose, 'remove background')
        img = _remove_background(img, distance=root_max_radius, smooth=1)
        img *= _nd.binary_erosion(mask, iterations=root_max_radius)

        # image binary segmentation
        _print_state(verbose, 'segment binary mask')
        rmask = _segment_root(img)
        rmask[-mask] = 0
        if min_dimension > 0:
            cluster = _nd.label(rmask)[0]
            cluster = _clean_label(cluster, min_dim=min_dimension)
            rmask = cluster > 0

        # save the mask, and bbox
        from PIL.PngImagePlugin import PngInfo
        meta = PngInfo()
        meta.add_text(
            'bbox',
            repr([(bbox[0].start, bbox[0].stop),
                  (bbox[1].start, bbox[1].stop)]))
        _Image(rmask).save(filename, dtype='uint8', scale=255, pnginfo=meta)

        return rmask, bbox
Esempio n. 8
0
def load(filename="", dtype=None, color=None):  ## to finish !
    """
    Load image from file. If filename is not a file, provide an interface to select it
    In this case, filename is used as the opening folder of the interface 
    """
    import os
    if not os.path.isfile(filename):
        filename = _getOpenFileName(filename)

    return _Image(filename, dtype=dtype, color=color)
Esempio n. 9
0
    def compute_circle(filename, image, circle_number):
        from ..image.circle import detect_circles
        cmask = _nd.binary_opening(image > .45, iterations=5)
        cluster = _nd.label(cmask)[0]
        cluster = _clean_label(cluster, min_dim=30)

        ind, qual, c, dmap = detect_circles(n=circle_number, cluster=cluster)
        radius = qual**.5 / _np.pi

        #cind = _np.zeros(c.max()+1)
        #cind[ind] = _np.arange(1,len(ind)+1)
        #cmask = cind[c]

        from PIL.PngImagePlugin import PngInfo
        meta = PngInfo()
        meta.add_text('circles', repr(ind.tolist()))
        meta.add_text('radius', repr(radius.tolist()))
        _Image(cluster).save(filename, dtype='uint8', scale=1, pnginfo=meta)
        #_Image(cmask).save(filename, dtype='uint8', scale=1)

        return cluster, ind, radius
Esempio n. 10
0
def detect_sift(image, verbose=True):
    kp, desc = _descriptors.detect_sift(image)

    if desc.max() < 256:
        desc = _Image(desc)  ##.astype('uint8'))
        desc.set_serializer(pil_format='PNG',
                            ser_dtype='uint8',
                            ser_scale=1,
                            extension='.png')
    elif verbose:
        print '  descriptors cannot be serialized into png'

    return kp, desc
Esempio n. 11
0
    def find_plate(filename, image, plate_width):
        from ..image.circle import detect_circles
        mask = image > .6  ## constant
        cluster = _clean_label(_nd.label(mask)[0], min_dim=100)  ## cosntant

        # find plate mask and hull
        pmask, phull = mask_fillhull(cluster > 0)
        pwidth = pmask.sum()**.5  # estimated plate width in pixels
        border = pwidth * .03  ## constant 3% of plate width
        pmask = pmask + 2 * _nd.binary_erosion(pmask > 0,
                                               iterations=int(border))
        px_scale = plate_width / pwidth

        # detect codebar box as the biggest connex cluster
        cbmask = _nd.label(
            _nd.binary_closing((cluster > 0) & (pmask == 3), iterations=5))[0]
        obj = _nd.find_objects(cbmask)
        cbbox = _np.argmax([max([o.stop - o.start for o in ob])
                            for ob in obj]) + 1

        # find codebar mask and hull
        cbmask, cbhull = mask_fillhull(cbmask == cbbox)

        # stack masks such that
        #   pixels to process = 3,
        #   codebar pixels = 2
        #   plate border = 1
        ##mask = pmask + 1*cbmask + 1*_nd.binary_erosion(pmask, iterations=int(border))
        pmask[cbmask > 0] = 2

        # save plate mask
        from PIL.PngImagePlugin import PngInfo
        meta = PngInfo()
        meta.add_text('px_scale', repr(px_scale))
        _Image(pmask).save(filename, dtype='uint8', scale=85,
                           pnginfo=meta)  # 85 = 255/pmask.max()

        return pmask, px_scale
Esempio n. 12
0
def detect_orb(image, max_features=2000):
    image = _Image(image, dtype='uint8',
                   color='gray')  # load and/or convert if necessary

    # Initiate STAR detector
    orb = cv2.ORB(nfeatures=max_features)

    # find the keypoints with ORB
    kp = orb.detect(image, None)

    # compute the descriptors with ORB
    kp, des = orb.compute(img, kp)

    # draw only keypoints location,not size and orientation
    return KeyPoint(kp), des
Esempio n. 13
0
def rice_test0(filename=None):
    import ConfigParser as cfg

    if filename is None:
        filename = '/Users/diener/root_data/perin/test0/test0.ini'

    ini = cfg.ConfigParser()
    ini.read(filename)
    ini = dict([(s, _Mapping(**dict(ini.items(s)))) for s in ini.sections()])

    out = []  # to store output

    for name in ['test_old']:  #ini.keys():##
        data = ini[name]

        mfile = data.mask
        tfile = data.tree

        param = dict([(k[6:], _param_eval(v)) for k, v in data.iteritems()
                      if k[:6] == 'param_'])

        image = _Image(data.image)  #,dtype='f',color='gray')
        if hasattr(data, 'sample'):
            sl = slice(None, None, _param_eval(data.sample))
            image = image[sl, sl]
        #image,op = _normalize_image(image)

        print "  *** processing image '%s': ***" % data.image
        print param
        mask, tree = image_pipeline_no_frame(image=image, **param)

        res = _Mapping()
        res.mask = mask  #_Image(mask).save(mfile, dtype='uint8', scale=255)
        res.tree = tree  #tree.dump(tfile)

        out.append(res)

    return out
Esempio n. 14
0
def image_pipeline(image,
                   seed_min_radius,
                   circle_number,
                   pixel_size,
                   min_dimension,
                   plant_number,
                   to_tree,
                   to_axe,
                   smooth=1,
                   seed_bbox=[.1, .35, .9, .65],
                   metadata=None,
                   output=None,
                   update=[],
                   verbose=True):
    import os

    if all(map(hasattr, (image, ) * 3, ('filename', 'metadata', 'output'))):
        metadata = image.metadata
        output = image.output
        image = image.filename

    if output is not None:
        out_mask = output + '_mask.png'
        out_seed = output + '_seed.png'
        out_tree = output + '_b.tree'
    else:
        update = ['all']

    # segment image:
    # --------------
    mask = None
    if 'mask' not in update and 'all' not in update and os.path.exists(
            out_mask):
        # try to load mask
        from ast import literal_eval
        import PIL
        try:
            info = PIL.Image.open(out_mask).info
            bbox = literal_eval(info['bbox'])
            bbox = map(lambda x: slice(*x), bbox)
            T = literal_eval(info['T'])
            T = _np.array(T)
            mask = _Image(out_mask, dtype=bool)
        except:
            _print_error(
                'Error while loading mask: unreadable file or missing/invalid metadata'
            )  ## print error line ?

    if mask is None:
        update = ['all']  # from here on, update everything

        # load image
        if isinstance(image, basestring):
            _print_state(verbose, 'load image file')
            image, op = _normalize_image(
                _Image(image, dtype='f', color='gray')[::2, ::2])  ## sliced !!
            image.__serializer__.post_op = op

        if smooth:
            img = _nd.gaussian_filter(image, sigma=smooth)
        else:
            img = image

        ## background removal
        #_print_state(verbose,'remove background')
        #img = _remove_background(img, distance=root_max_radius, smooth=1)

        # image binary segmentation
        _print_state(verbose, 'segment binary mask')
        # convert to uint8 dtype for segmentation not to fail as a consequence of hardware filtering
        img = ((256 / img.max()) * img).astype('uint8')
        cluster, T, bbox = _segment_root(img,
                                         n=circle_number,
                                         pixel_size=pixel_size,
                                         min_dimension=min_dimension)
        mask = cluster > 0  ## should it be in segmentation function ? not really...

        if output is not None:
            from PIL.PngImagePlugin import PngInfo
            dir_mask = os.path.dirname(out_mask)
            if len(dir_mask) and not os.path.exists(dir_mask):
                os.makedirs(dir_mask)
            meta = PngInfo()
            meta.add_text(
                'bbox',
                repr([(bbox[0].start, bbox[0].stop),
                      (bbox[1].start, bbox[1].stop)]))
            meta.add_text('T', repr(T.tolist()))
            _Image(mask).save(out_mask, dtype='uint8', scale=255, pnginfo=meta)

    # detect seed:
    # ------------
    seed_map = None
    seed_save_scale = 36  ## jsut for visualisation, auto scaling should be done, with clean_label at loading
    if 'seed' not in update and 'all' not in update and os.path.exists(
            out_seed):
        try:
            seed_map = _Image(out_seed,
                              dtype='uint8',
                              scale=1. / seed_save_scale)
        except:
            _print_error('Error while loading seed_map file')

    if seed_map is None:
        update = ['all']  # from here on, update everything

        _print_state(verbose, 'detect seeds')
        seed_map = _detect_seeds(mask=mask,
                                 seed_number=plant_number,
                                 radius_min=seed_min_radius,
                                 seed_height=seed_height,
                                 sort=True)

        if output is not None:
            _Image(seed_map).save(out_seed, dtype='uint8', scale=36)

    # compute graph:
    # --------------
    pl_graph = None
    if 'graph' not in update and 'all' not in update and os.path.exists(
            out_tree):  ## only tree is saved
        try:
            pl_graph = _Data.load(out_tree)
        except:
            _print_error(
                'Error while loading graph file (actually, the tree file which stores the graph)'
            )

    if pl_graph is None:
        update = ['all']  # from here on, update everything

        # image linear decomposition
        _print_state(verbose, 'compute mask linear decomposition')
        sskl, nmap, smap, seed = _linear_label(mask=mask,
                                               seed_map=seed_map,
                                               compute_segment_map=True)

        # make "image-graph"
        _print_state(verbose,
                     'compute graph representation of mask decomposition')
        im_graph = _image_graph(segment_skeleton=sskl,
                                node_map=nmap,
                                segment_map=smap,
                                seed=seed)

        # make polyline graph
        _print_state(verbose, 'compute graph of roots')
        pl_graph = _line_graph(image_graph=im_graph, segment_skeleton=sskl)

        # shift graph node position by cropped box left corner
        pl_graph.node.x()[:] += bbox[1].start
        pl_graph.node.y()[:] += bbox[0].start
        pl_graph.node.position[:, 0] = 0

    # extract axial tree:
    # -------------------
    tree = None
    if 'tree' not in update and 'all' not in update and os.path.exists(
            out_tree):
        try:
            tree = _Data.load(out_tree)
        except:
            _print_error('Error while loading tree file')

    if tree is None:
        _print_state(verbose, 'extract axial tree')
        tree = _RootTree(node=pl_graph.node,
                         segment=pl_graph.segment,
                         to_tree=to_tree,
                         to_axe=to_axe,
                         single_order1_axe=False)

        if metadata is not None: tree.metadata = metadata
        if output is not None: tree.dump(out_tree)

    return tree
Esempio n. 15
0
def image_pipeline(image,
                   plate_width=120,
                   min_dimension=50,
                   smooth=1,
                   to_tree=2,
                   to_axe=2,
                   seed_height=[0, .25],
                   metadata=None,
                   output=None,
                   update=[],
                   verbose=True):
    import os

    if hasattr(image, 'metadata'): metadata = image.metadata
    if hasattr(image, 'output'): output = image.output
    if hasattr(image, 'filename'): image = image.filename

    plant_number = int(metadata.plant_number)

    #circle_number = metadata.get('circle_number', circle_number)

    # function recompute the data only if necessary
    def get_data(name, out, load, load_args, compute, compute_args={}):
        data = None
        if name not in update and 'all' not in update and os.path.exists(out):
            try:
                data = load(out, **load_args)
            except:
                _print_error(
                    'Error while loading %s: unreadable file or missing/invalid metadata'
                    % name)  ## print error line ?

        if data is None:
            #update = ['all']  # update all following data ## problem of var scope, maybe not necessary: do it by hand if necessary
            _print_state(verbose, '  computing ' + name)
            data = compute(out, **compute_args)
        else:
            _print_state(verbose, '  > ' + name + ' loaded')

        return data

    # name of output files
    if output is None:
        update = ['all']

    # assert output directory exist
    outdir = os.path.dirname(output)
    if len(outdir) and not os.path.exists(outdir):
        os.makedirs(outdir)

    out_frame = output + '_frame.png'
    out_circle = output + '_circle.png'
    out_mask = output + '_mask.png'
    out_seed = output + '_seed.png'
    out_tree = output + '.tree'

    ## load image, woulod be nice to avoid if possible
    image, op = _normalize_image(_Image(
        image, dtype='f', color='gray'))  #[::2,::2]) ## sliced !!
    image.__serializer__.post_op = op

    # segment image:
    # --------------
    # find circles
    def compute_circle(filename, image, circle_number):
        from ..image.circle import detect_circles
        cmask = _nd.binary_opening(image > .45, iterations=5)
        cluster = _nd.label(cmask)[0]
        cluster = _clean_label(cluster, min_dim=30)

        ind, qual, c, dmap = detect_circles(n=circle_number, cluster=cluster)
        radius = qual**.5 / _np.pi

        #cind = _np.zeros(c.max()+1)
        #cind[ind] = _np.arange(1,len(ind)+1)
        #cmask = cind[c]

        from PIL.PngImagePlugin import PngInfo
        meta = PngInfo()
        meta.add_text('circles', repr(ind.tolist()))
        meta.add_text('radius', repr(radius.tolist()))
        _Image(cluster).save(filename, dtype='uint8', scale=1, pnginfo=meta)
        #_Image(cmask).save(filename, dtype='uint8', scale=1)

        return cluster, ind, radius

    def load_circle(filename):
        from ast import literal_eval
        import PIL
        info = PIL.Image.open(filename).info
        cind = literal_eval(info['circles'])
        rad = literal_eval(info['radius'])
        cmask = _Image(filename, dtype='uint8', scale=1)

        return cmask, cind, rad

    #cmask, ind, radius = get_data('circle', out_circle, load_circle, {}, \
    #                              compute_circle, dict(image=image,circle_number=circle_number))

    def mask_fillhull(mask):
        """ find mask hull, and return image with filled hull image and hull array"""
        from scipy import sparse, spatial
        px = _np.transpose(mask.nonzero())

        # compute hull (sort indices using csgraph stuff)
        hull = spatial.Delaunay(px).convex_hull
        graf = sparse.csr_matrix((_np.ones(hull.shape[0]), hull.T),
                                 shape=(hull.max() + 1, ) * 2)
        hull = sparse.csgraph.depth_first_order(graf,
                                                hull[0, 0],
                                                directed=False)[0]
        hull = px[hull]

        ##todo: fit quad plate and transform

        # compute (out of) petri plate mask
        from PIL import Image, ImageDraw
        plate = Image.new('L', mask.shape[::-1], 0)
        ImageDraw.Draw(plate).polygon([tuple(p) for p in hull[:, ::-1]],
                                      fill=1)
        plate = _np.array(plate)

        return plate, hull

    def find_plate(filename, image, plate_width):
        from ..image.circle import detect_circles
        mask = image > .6  ## constant
        cluster = _clean_label(_nd.label(mask)[0], min_dim=100)  ## cosntant

        # find plate mask and hull
        pmask, phull = mask_fillhull(cluster > 0)
        pwidth = pmask.sum()**.5  # estimated plate width in pixels
        border = pwidth * .03  ## constant 3% of plate width
        pmask = pmask + 2 * _nd.binary_erosion(pmask > 0,
                                               iterations=int(border))
        px_scale = plate_width / pwidth

        # detect codebar box as the biggest connex cluster
        cbmask = _nd.label(
            _nd.binary_closing((cluster > 0) & (pmask == 3), iterations=5))[0]
        obj = _nd.find_objects(cbmask)
        cbbox = _np.argmax([max([o.stop - o.start for o in ob])
                            for ob in obj]) + 1

        # find codebar mask and hull
        cbmask, cbhull = mask_fillhull(cbmask == cbbox)

        # stack masks such that
        #   pixels to process = 3,
        #   codebar pixels = 2
        #   plate border = 1
        ##mask = pmask + 1*cbmask + 1*_nd.binary_erosion(pmask, iterations=int(border))
        pmask[cbmask > 0] = 2

        # save plate mask
        from PIL.PngImagePlugin import PngInfo
        meta = PngInfo()
        meta.add_text('px_scale', repr(px_scale))
        _Image(pmask).save(filename, dtype='uint8', scale=85,
                           pnginfo=meta)  # 85 = 255/pmask.max()

        return pmask, px_scale

    def load_plate_mask(filename):
        from ast import literal_eval
        import PIL
        info = PIL.Image.open(filename).info
        px_scale = literal_eval(info['px_scale'])
        return _Image(filename, dtype='uint8') / 85, px_scale

    pmask, px_scale = get_data('frame', out_frame, load_plate_mask, {}, \
                                        find_plate, dict(image=image, plate_width=plate_width))

    # do the actual image segmentation
    def segment_image(filename,
                      image,
                      mask,
                      root_max_radius=15,
                      min_dimension=50,
                      smooth=1):
        #mask = _nd.binary_erosion(mask==mask.max(), iterations=
        mask = mask == mask.max()

        # find the bounding box, and crop image and mask
        bbox = _nd.find_objects(mask)[0]
        mask = mask[bbox]
        img = image[bbox]

        if smooth:
            smooth_img = _nd.gaussian_filter(img * mask, sigma=smooth)
            smooth_img /= _np.maximum(
                _nd.gaussian_filter(mask.astype('f'), sigma=smooth), 2**-10)
            img[mask] = smooth_img[mask]

        # background removal
        _print_state(verbose, 'remove background')
        img = _remove_background(img, distance=root_max_radius, smooth=1)
        img *= _nd.binary_erosion(mask, iterations=root_max_radius)

        # image binary segmentation
        _print_state(verbose, 'segment binary mask')
        rmask = _segment_root(img)
        rmask[-mask] = 0
        if min_dimension > 0:
            cluster = _nd.label(rmask)[0]
            cluster = _clean_label(cluster, min_dim=min_dimension)
            rmask = cluster > 0

        # save the mask, and bbox
        from PIL.PngImagePlugin import PngInfo
        meta = PngInfo()
        meta.add_text(
            'bbox',
            repr([(bbox[0].start, bbox[0].stop),
                  (bbox[1].start, bbox[1].stop)]))
        _Image(rmask).save(filename, dtype='uint8', scale=255, pnginfo=meta)

        return rmask, bbox

    def load_root_mask(filename):
        from ast import literal_eval
        import PIL
        info = PIL.Image.open(out_mask).info
        bbox = literal_eval(info['bbox'])
        bbox = map(lambda x: slice(*x), bbox)
        return _Image(filename, dtype=bool), bbox

    mask, bbox = get_data('mask', out_mask, load_root_mask, {}, \
                    segment_image, dict(image=image,mask=pmask, smooth=smooth))

    # root_max_radius=15, min_dimension=50):

    # detect leaves:
    # --------------
    def find_leaves(filename,
                    mask,
                    image,
                    plant_number,
                    root_radius=3,
                    leaf_height=[0, .2],
                    sort=True):
        seed_map = _detect_leaves(mask=mask,
                                  image=image,
                                  leaf_number=plant_number,
                                  root_radius=root_radius,
                                  leaf_height=leaf_height,
                                  sort=sort)  ##
        _Image(seed_map).save(out_seed, dtype='uint8',
                              scale=25)  ## max 10 plants

        return seed_map

    def load_leaves(filename):
        return _Image(filename, dtype='uint8', scale=1. / 25)

    seed_map = get_data('seed', out_seed, load_leaves, {}, \
        find_leaves, dict(mask=mask,image=image[bbox],plant_number=plant_number, root_radius=3, leaf_height=[0,.2]))

    # compute graph:
    # --------------
    def compute_graph(filename, mask, seed_map):
        _print_state(verbose, 'compute mask linear decomposition')
        sskl, nmap, smap, seed = _linear_label(mask=mask,
                                               seed_map=seed_map,
                                               compute_segment_map=True)

        # make "image-graph"
        _print_state(verbose,
                     'compute graph representation of mask decomposition')
        im_graph = _image_graph(segment_skeleton=sskl,
                                node_map=nmap,
                                segment_map=smap,
                                seed=seed)

        # make polyline graph
        _print_state(verbose, 'compute graph of roots')
        pl_graph = _line_graph(image_graph=im_graph, segment_skeleton=sskl)

        # shift graph node position by cropped box left corner
        pl_graph.node.x()[:] += bbox[1].start
        pl_graph.node.y()[:] += bbox[0].start
        pl_graph.node.position[:, 0] = 0

        pl_graph.dump(filename)

        return pl_graph

    def load_graph(filename, tree):
        graph = _Data.load(filename)
        if tree and not hasattr(graph, 'axe'):
            return None  # induce computing but no error message
            #raise IOError('loaded graph is not a tree')

        return graph

    graph = get_data('graph', out_tree, load_graph, dict(tree=False), \
                     compute_graph, dict(mask=mask, seed_map=seed_map))

    # compute axial tree:
    # -------------------
    def compute_tree(filename, graph, to_tree, to_axe, metadata, px_scale,
                     verbose):
        metadata.px_scale = px_scale
        tree = _compute_tree(graph,
                             to_tree=to_tree,
                             to_axe=to_axe,
                             metadata=metadata,
                             output_file=filename,
                             verbose=verbose)
        return tree

    tree = get_data('tree', out_tree, load_graph, dict(tree=True), \
                     compute_tree, dict(graph=graph, to_tree=to_tree, to_axe=to_axe, metadata=metadata, px_scale=px_scale, verbose=verbose))

    return tree
Esempio n. 16
0
 def load_plate_mask(filename):
     from ast import literal_eval
     import PIL
     info = PIL.Image.open(filename).info
     px_scale = literal_eval(info['px_scale'])
     return _Image(filename, dtype='uint8') / 85, px_scale
Esempio n. 17
0
def load_image(filename, normalize=True):
    img = _Image(filename, dtype='f', color='gray')
    if normalize:
        img,op = normalize_image(img)
        img.__serializer__.post_op = op
    return img
Esempio n. 18
0
 def load_leaves(filename):
     return _Image(filename, dtype='uint8', scale=1. / 25)