Esempio n. 1
0
def test_apply_discrete_cmap():
    """Should return valid data and mask."""
    cm = {1: (0, 0, 0, 255), 2: (255, 255, 255, 255)}
    data = numpy.zeros(shape=(1, 10, 10), dtype=numpy.uint16)
    data[0, 0:2, 0:2] = 1000
    data[0, 2:5, 2:5] = 1
    data[0, 5:, 5:] = 2
    d, m = colormap.apply_discrete_cmap(data, cm)
    assert d.shape == (3, 10, 10)
    assert m.shape == (10, 10)
    mask = numpy.zeros(shape=(10, 10), dtype=numpy.uint8)
    mask[2:5, 2:5] = 255
    mask[5:, 5:] = 255
    numpy.testing.assert_array_equal(m, mask)

    data = data.astype("uint16")
    d, m = colormap.apply_discrete_cmap(data, cm)
    assert d.dtype == numpy.uint8
    assert m.dtype == numpy.uint8

    cm = {1: (0, 0, 0, 255), 1000: (255, 255, 255, 255)}
    d, m = colormap.apply_cmap(data, cm)
    dd, mm = colormap.apply_discrete_cmap(data, cm)
    numpy.testing.assert_array_equal(dd, d)
    numpy.testing.assert_array_equal(mm, m)

    cm = deepcopy(colormap.EMPTY_COLORMAP)
    cm.pop(255)
    cm[1000] = (255, 255, 255, 255)

    d, m = colormap.apply_cmap(data, cm)
    dd, mm = colormap.apply_discrete_cmap(data, cm)

    cm = {1: (0, 0, 0, 255), 256: (255, 255, 255, 255)}
    assert colormap.apply_cmap(data, cm)
Esempio n. 2
0
def test_apply_cmap():
    """Should return valid data and mask."""
    cm = {1: [0, 0, 0, 255], 2: [255, 255, 255, 255]}
    data = numpy.zeros(shape=(1, 10, 10), dtype=numpy.uint8)
    data[0, 2:5, 2:5] = 1
    data[0, 5:, 5:] = 2
    d, m = colormap.apply_cmap(data, cm)
    assert d.shape == (3, 10, 10)
    assert m.shape == (10, 10)
    mask = numpy.zeros(shape=(10, 10), dtype=numpy.uint8)
    mask[2:5, 2:5] = 255
    mask[5:, 5:] = 255
    numpy.testing.assert_array_equal(m, mask)

    with pytest.raises(InvalidFormat):
        data = numpy.repeat(data, 3, axis=0)
        colormap.apply_cmap(data, cm)
Esempio n. 3
0
    def get(self,
            request,
            pk=None,
            project_pk=None,
            tile_type="",
            z="",
            x="",
            y="",
            scale=1):
        """
        Get a tile image
        """
        task = self.get_and_check_task(request, pk)

        z = int(z)
        x = int(x)
        y = int(y)

        scale = int(scale)
        ext = "png"
        driver = "jpeg" if ext == "jpg" else ext

        indexes = None
        nodata = None
        rgb_tile = None

        formula = self.request.query_params.get('formula')
        bands = self.request.query_params.get('bands')
        rescale = self.request.query_params.get('rescale')
        color_map = self.request.query_params.get('color_map')
        hillshade = self.request.query_params.get('hillshade')
        boundaries_feature = self.request.query_params.get('boundaries')
        if boundaries_feature == '':
            boundaries_feature = None
        if boundaries_feature is not None:
            try:
                boundaries_feature = json.loads(boundaries_feature)
            except json.JSONDecodeError:
                raise exceptions.ValidationError(
                    _("Invalid boundaries parameter"))

        if formula == '': formula = None
        if bands == '': bands = None
        if rescale == '': rescale = None
        if color_map == '': color_map = None
        if hillshade == '' or hillshade == '0': hillshade = None

        try:
            expr, _discard_ = lookup_formula(formula, bands)
        except ValueError as e:
            raise exceptions.ValidationError(str(e))

        if tile_type in ['dsm', 'dtm'] and rescale is None:
            rescale = "0,1000"
        if tile_type == 'orthophoto' and rescale is None:
            rescale = "0,255"

        if tile_type in ['dsm', 'dtm'] and color_map is None:
            color_map = "gray"

        if tile_type == 'orthophoto' and formula is not None:
            if color_map is None:
                color_map = "gray"
            if rescale is None:
                rescale = "-1,1"

        if nodata is not None:
            nodata = np.nan if nodata == "nan" else float(nodata)
        tilesize = scale * 256
        url = get_raster_path(task, tile_type)
        if not os.path.isfile(url):
            raise exceptions.NotFound()

        with COGReader(url) as src:
            if not src.tile_exists(z, x, y):
                raise exceptions.NotFound(_("Outside of bounds"))

        with COGReader(url) as src:
            minzoom, maxzoom = get_zoom_safe(src)
            has_alpha = has_alpha_band(src.dataset)
            if z < minzoom - ZOOM_EXTRA_LEVELS or z > maxzoom + ZOOM_EXTRA_LEVELS:
                raise exceptions.NotFound()
            if boundaries_feature is not None:
                try:
                    boundaries_cutline = create_cutline(
                        src.dataset, boundaries_feature,
                        CRS.from_string('EPSG:4326'))
                except:
                    raise exceptions.ValidationError(_("Invalid boundaries"))
            else:
                boundaries_cutline = None
            # Handle N-bands datasets for orthophotos (not plant health)
            if tile_type == 'orthophoto' and expr is None:
                ci = src.dataset.colorinterp
                # More than 4 bands?
                if len(ci) > 4:
                    # Try to find RGBA band order
                    if ColorInterp.red in ci and \
                            ColorInterp.green in ci and \
                            ColorInterp.blue in ci:
                        indexes = (
                            ci.index(ColorInterp.red) + 1,
                            ci.index(ColorInterp.green) + 1,
                            ci.index(ColorInterp.blue) + 1,
                        )
                    else:
                        # Fallback to first three
                        indexes = (
                            1,
                            2,
                            3,
                        )
                elif has_alpha:
                    indexes = non_alpha_indexes(src.dataset)

            # Workaround for https://github.com/OpenDroneMap/WebODM/issues/894
            if nodata is None and tile_type == 'orthophoto':
                nodata = 0

        resampling = "nearest"
        padding = 0
        if tile_type in ["dsm", "dtm"]:
            resampling = "bilinear"
            padding = 16

        try:
            with COGReader(url) as src:
                if expr is not None:
                    if boundaries_cutline is not None:
                        tile = src.tile(
                            x,
                            y,
                            z,
                            expression=expr,
                            tilesize=tilesize,
                            nodata=nodata,
                            padding=padding,
                            resampling_method=resampling,
                            vrt_options={'cutline': boundaries_cutline})
                    else:
                        tile = src.tile(x,
                                        y,
                                        z,
                                        expression=expr,
                                        tilesize=tilesize,
                                        nodata=nodata,
                                        padding=padding,
                                        resampling_method=resampling)
                else:
                    if boundaries_cutline is not None:
                        tile = src.tile(
                            x,
                            y,
                            z,
                            tilesize=tilesize,
                            nodata=nodata,
                            padding=padding,
                            resampling_method=resampling,
                            vrt_options={'cutline': boundaries_cutline})
                    else:
                        tile = src.tile(x,
                                        y,
                                        z,
                                        indexes=indexes,
                                        tilesize=tilesize,
                                        nodata=nodata,
                                        padding=padding,
                                        resampling_method=resampling)

        except TileOutsideBounds:
            raise exceptions.NotFound(_("Outside of bounds"))

        if color_map:
            try:
                colormap.get(color_map)
            except InvalidColorMapName:
                raise exceptions.ValidationError(
                    _("Not a valid color_map value"))

        intensity = None
        try:
            rescale_arr = list(map(float, rescale.split(",")))
        except ValueError:
            raise exceptions.ValidationError(_("Invalid rescale value"))

        options = img_profiles.get(driver, {})
        if hillshade is not None:
            try:
                hillshade = float(hillshade)
                if hillshade <= 0:
                    hillshade = 1.0
            except ValueError:
                raise exceptions.ValidationError(_("Invalid hillshade value"))
            if tile.data.shape[0] != 1:
                raise exceptions.ValidationError(
                    _("Cannot compute hillshade of non-elevation raster (multiple bands found)"
                      ))
            delta_scale = (maxzoom + ZOOM_EXTRA_LEVELS + 1 - z) * 4
            dx = src.dataset.meta["transform"][0] * delta_scale
            dy = -src.dataset.meta["transform"][4] * delta_scale
            ls = LightSource(azdeg=315, altdeg=45)
            # Hillshading is not a local tile operation and
            # requires neighbor tiles to be rendered seamlessly
            elevation = get_elevation_tiles(tile.data[0], url, x, y, z,
                                            tilesize, nodata, resampling,
                                            padding)
            intensity = ls.hillshade(elevation,
                                     dx=dx,
                                     dy=dy,
                                     vert_exag=hillshade)
            intensity = intensity[tilesize:tilesize * 2, tilesize:tilesize * 2]

        if intensity is not None:
            rgb = tile.post_process(in_range=(rescale_arr, ))
            if colormap:
                rgb, _discard_ = apply_cmap(rgb.data, colormap.get(color_map))
            if rgb.data.shape[0] != 3:
                raise exceptions.ValidationError(
                    _("Cannot process tile: intensity image provided, but no RGB data was computed."
                      ))
            intensity = intensity * 255.0
            rgb = hsv_blend(rgb, intensity)
            if rgb is not None:
                return HttpResponse(render(rgb,
                                           tile.mask,
                                           img_format=driver,
                                           **options),
                                    content_type="image/{}".format(ext))

        if color_map is not None:
            return HttpResponse(
                tile.post_process(in_range=(rescale_arr, )).render(
                    img_format=driver,
                    colormap=colormap.get(color_map),
                    **options),
                content_type="image/{}".format(ext))
        return HttpResponse(tile.post_process(in_range=(rescale_arr, )).render(
            img_format=driver, **options),
                            content_type="image/{}".format(ext))
Esempio n. 4
0
def export_raster(input, output, **opts):
    epsg = opts.get('epsg')
    expression = opts.get('expression')
    export_format = opts.get('format')
    rescale = opts.get('rescale')
    color_map = opts.get('color_map')
    hillshade = opts.get('hillshade')
    asset_type = opts.get('asset_type')
    name = opts.get('name', 'raster') # KMZ specific

    dem = asset_type in ['dsm', 'dtm']
    
    with COGReader(input) as ds_src:
        src = ds_src.dataset
        profile = src.meta.copy()

        # Output format
        driver = "GTiff"
        compress = None
        max_bands = 9999
        with_alpha = True
        rgb = False
        indexes = src.indexes
        output_raster = output
        jpg_background = 255 # white

        # KMZ is special, we just export it as jpg with EPSG:4326
        # and then call GDAL to tile/package it
        kmz = export_format == "kmz"
        if kmz:
            export_format = "jpg"
            epsg = 4326
            path_base, _ = os.path.splitext(output)
            output_raster = path_base + ".jpg"
            jpg_background = 0 # black

        if export_format == "jpg":
            driver = "JPEG"
            profile.update(quality=90)
            band_count = 3
            with_alpha = False
            rgb = True
        elif export_format == "png":
            driver = "PNG"
            band_count = 4
            rgb = True
        elif export_format == "gtiff-rgb":
            compress = "JPEG"
            profile.update(jpeg_quality=90)
            band_count = 4
            rgb = True
        else:
            compress = "DEFLATE"
            band_count = src.count
        
        if compress is not None:
            profile.update(compress=compress)
            profile.update(predictor=2 if compress == "DEFLATE" else 1)

        if rgb and rescale is None:
            # Compute min max
            nodata = None
            if asset_type == 'orthophoto':
                nodata = 0
            md = ds_src.metadata(pmin=2.0, pmax=98.0, hist_options={"bins": 255}, nodata=nodata)
            rescale = [md['statistics']['1']['min'], md['statistics']['1']['max']]

        ci = src.colorinterp

        if rgb and expression is None:
            # More than 4 bands?
            if len(ci) > 4:
                # Try to find RGBA band order
                if ColorInterp.red in ci and \
                        ColorInterp.green in ci and \
                        ColorInterp.blue in ci and \
                        ColorInterp.alpha in ci:
                    indexes = (ci.index(ColorInterp.red) + 1,
                                ci.index(ColorInterp.green) + 1,
                                ci.index(ColorInterp.blue) + 1,
                                ci.index(ColorInterp.alpha) + 1)

        if ColorInterp.alpha in ci:
            mask = src.read(ci.index(ColorInterp.alpha) + 1)
        else:
            mask = src.dataset_mask()

        cmap = None
        if color_map:
            try:
                cmap = colormap.get(color_map)
            except InvalidColorMapName:
                logger.warning("Invalid colormap {}".format(color_map))


        def process(arr, skip_rescale=False, skip_alpha=False, skip_type=False):
            if not skip_rescale and rescale is not None:
                arr = linear_rescale(arr, in_range=rescale)
            if not skip_alpha and not with_alpha:
                arr[mask==0] = jpg_background
            if not skip_type and rgb and arr.dtype != np.uint8:
                arr = arr.astype(np.uint8)

            return arr

        def update_rgb_colorinterp(dst):
            if with_alpha:
                dst.colorinterp = [ColorInterp.red, ColorInterp.green, ColorInterp.blue, ColorInterp.alpha]
            else:
                dst.colorinterp = [ColorInterp.red, ColorInterp.green, ColorInterp.blue]

        profile.update(driver=driver, count=band_count)
        if rgb:
            profile.update(dtype=rasterio.uint8)

        if dem and rgb and profile.get('nodata') is not None:
            profile.update(nodata=None)

        # Define write band function
        # Reprojection needed?
        if src.crs is not None and epsg is not None and src.crs.to_epsg() != epsg:
            dst_crs = "EPSG:{}".format(epsg)

            transform, width, height = calculate_default_transform(
                src.crs, dst_crs, src.width, src.height, *src.bounds)

            profile.update(
                crs=dst_crs,
                transform=transform,
                width=width,
                height=height
            )

            def write_band(arr, dst, band_num):
                reproject(source=arr, 
                        destination=rasterio.band(dst, band_num),
                        src_transform=src.transform,
                        src_crs=src.crs,
                        dst_transform=transform,
                        dst_crs=dst_crs,
                        resampling=Resampling.nearest)

        else:
            # No reprojection needed
            def write_band(arr, dst, band_num):
                dst.write(arr, band_num)

        if expression is not None:
            # Apply band math
            if rgb:
                profile.update(dtype=rasterio.uint8, count=band_count)
            else:
                profile.update(dtype=rasterio.float32, count=1, nodata=-9999)

            bands_names = ["b{}".format(b) for b in tuple(sorted(set(re.findall(r"b(?P<bands>[0-9]{1,2})", expression))))]
            rgb_expr = expression.split(",")
            indexes = tuple([int(b.replace("b", "")) for b in bands_names])

            alpha_index = None
            if has_alpha_band(src):
                try:
                    alpha_index = src.colorinterp.index(ColorInterp.alpha) + 1
                    indexes += (alpha_index, )
                except ValueError:
                    pass

            data = src.read(indexes=indexes, out_dtype=np.float32)
            arr = dict(zip(bands_names, data))
            arr = np.array([np.nan_to_num(ne.evaluate(bloc.strip(), local_dict=arr)) for bloc in rgb_expr])

            # Set nodata values
            index_band = arr[0]
            if alpha_index is not None:
                # -1 is the last band = alpha
                index_band[data[-1] == 0] = -9999

            # Remove infinity values
            index_band[index_band>1e+30] = -9999
            index_band[index_band<-1e+30] = -9999

            # Make sure this is float32
            arr = arr.astype(np.float32)

            with rasterio.open(output_raster, 'w', **profile) as dst:
                # Apply colormap?
                if rgb and cmap is not None:
                    rgb_data, _ = apply_cmap(process(arr, skip_alpha=True), cmap)

                    band_num = 1
                    for b in rgb_data:
                        write_band(process(b, skip_rescale=True), dst, band_num)
                        band_num += 1

                    if with_alpha:
                        write_band(mask, dst, band_num)
                    
                    update_rgb_colorinterp(dst)
                else:
                    # Raw
                    write_band(process(arr)[0], dst, 1)
        elif dem:
            # Apply hillshading, colormaps to elevation
            with rasterio.open(output_raster, 'w', **profile) as dst:
                arr = src.read()

                intensity = None
                if hillshade is not None and hillshade > 0:
                    delta_scale = (ZOOM_EXTRA_LEVELS + 1) * 4
                    dx = src.meta["transform"][0] * delta_scale
                    dy = -src.meta["transform"][4] * delta_scale
                    ls = LightSource(azdeg=315, altdeg=45)
                    intensity = ls.hillshade(arr[0], dx=dx, dy=dy, vert_exag=hillshade)
                    intensity = intensity * 255.0

                # Apply colormap?
                if rgb and cmap is not None:
                    rgb_data, _ = apply_cmap(process(arr, skip_alpha=True), cmap)

                    if intensity is not None:
                        rgb_data = hsv_blend(rgb_data, intensity)
                        
                    band_num = 1
                    for b in rgb_data:
                        write_band(process(b, skip_rescale=True), dst, band_num)
                        band_num += 1
                    
                    if with_alpha:
                        write_band(mask, dst, band_num)

                    update_rgb_colorinterp(dst)
                else:
                    # Raw
                    write_band(process(arr)[0], dst, 1)
        else:
            # Copy bands as-is
            with rasterio.open(output_raster, 'w', **profile) as dst:
                band_num = 1
                for idx in indexes:
                    ci = src.colorinterp[idx - 1]
                    arr = src.read(idx)

                    if ci == ColorInterp.alpha:
                        if with_alpha:
                            write_band(arr, dst, band_num)
                            band_num += 1
                    else:
                        write_band(process(arr), dst, band_num)
                        band_num += 1
                
                new_ci = [src.colorinterp[idx - 1] for idx in indexes]
                if not with_alpha:
                    new_ci = [ci for ci in new_ci if ci != ColorInterp.alpha]
                    
                dst.colorinterp = new_ci
                
        if kmz:
            subprocess.check_output(["gdal_translate", "-of", "KMLSUPEROVERLAY", 
                                        "-co", "Name={}".format(name),
                                        "-co", "FORMAT=JPEG", output_raster, output])
Esempio n. 5
0
def render(
    tile: numpy.ndarray,
    mask: Optional[numpy.ndarray] = None,
    img_format: str = "PNG",
    colormap: Optional[Dict] = None,
    **creation_options: Any,
) -> bytes:
    """
    Translate numpy ndarray to image buffer using GDAL.

    Usage
    -----
        tile, mask = rio_tiler.utils.tile_read(......)
        with open('test.jpg', 'wb') as f:
            f.write(render(tile, mask, img_format="jpeg"))

    Attributes
    ----------
        tile : numpy ndarray
            Image array to encode.
        mask: numpy ndarray, optional
            Mask array
        img_format: str, optional
            Image format to return (default: 'png').
            List of supported format by GDAL: https://www.gdal.org/formats_list.html
        colormap: dict, optional
            GDAL RGBA Color Table dictionary.
        creation_options: dict, optional
            Image driver creation options to pass to GDAL

    Returns
    -------
        bytes: BytesIO
            Reurn image body.

    """
    img_format = img_format.upper()

    if len(tile.shape) < 3:
        tile = numpy.expand_dims(tile, axis=0)

    if colormap:
        tile, alpha = apply_cmap(tile, colormap)
        if mask is not None:
            mask = (
                mask * alpha * 255
            )  # This is a special case when we want to mask some valid data

    # WEBP doesn't support 1band dataset so we must hack to create a RGB dataset
    if img_format == "WEBP" and tile.shape[0] == 1:
        tile = numpy.repeat(tile, 3, axis=0)
    elif img_format == "JPEG":
        mask = None

    count, height, width = tile.shape

    output_profile = dict(
        driver=img_format,
        dtype=tile.dtype,
        count=count + 1 if mask is not None else count,
        height=height,
        width=width,
    )
    output_profile.update(creation_options)

    with MemoryFile() as memfile:
        with memfile.open(**output_profile) as dst:
            dst.write(tile, indexes=list(range(1, count + 1)))
            # Use Mask as an alpha band
            if mask is not None:
                dst.write(mask.astype(tile.dtype), indexes=count + 1)

        return memfile.read()