Esempio n. 1
0
def load_binary_clf_tracks() -> typing.List[Track]:
    """Return binary classification tracks."""

    return [
        Track(
            name="Phishing",
            dataset=datasets.Phishing(),
            metric=metrics.Accuracy() + metrics.F1(),
        ),
        Track(
            name="Bananas",
            dataset=datasets.Bananas(),
            metric=metrics.Accuracy() + metrics.F1(),
        ),
    ]
Esempio n. 2
0
    def __init__(self, cm: "metrics.ConfusionMatrix" = None):

        self.cm = metrics.ConfusionMatrix() if cm is None else cm
        self.accuracy = metrics.Accuracy(cm=self.cm)
        self.kappa = metrics.CohenKappa(cm=self.cm)
        self.kappa_m = metrics.KappaM(cm=self.cm)
        self.kappa_t = metrics.KappaT(cm=self.cm)
        self.recall = metrics.Recall(cm=self.cm)
        self.micro_recall = metrics.MicroRecall(cm=self.cm)
        self.macro_recall = metrics.MacroRecall(cm=self.cm)
        self.precision = metrics.Precision(cm=self.cm)
        self.micro_precision = metrics.MicroPrecision(cm=self.cm)
        self.macro_precision = metrics.MacroPrecision(cm=self.cm)
        self.f1 = metrics.F1(cm=self.cm)
        self.micro_f1 = metrics.MicroF1(cm=self.cm)
        self.macro_f1 = metrics.MacroF1(cm=self.cm)
        self.geometric_mean = metrics.GeometricMean(cm=self.cm)
Esempio n. 3
0
     partial(sk_metrics.precision_score, average='micro')),
    (metrics.WeightedPrecision(),
     partial(sk_metrics.precision_score, average='weighted')),
    (metrics.Recall(), sk_metrics.recall_score),
    (metrics.MacroRecall(), partial(sk_metrics.recall_score, average='macro')),
    (metrics.MicroRecall(), partial(sk_metrics.recall_score, average='micro')),
    (metrics.WeightedRecall(),
     partial(sk_metrics.recall_score, average='weighted')),
    (metrics.FBeta(beta=.5), partial(sk_metrics.fbeta_score, beta=.5)),
    (metrics.MacroFBeta(beta=.5),
     partial(sk_metrics.fbeta_score, beta=.5, average='macro')),
    (metrics.MicroFBeta(beta=.5),
     partial(sk_metrics.fbeta_score, beta=.5, average='micro')),
    (metrics.WeightedFBeta(beta=.5),
     partial(sk_metrics.fbeta_score, beta=.5, average='weighted')),
    (metrics.F1(), sk_metrics.f1_score),
    (metrics.MacroF1(), partial(sk_metrics.f1_score, average='macro')),
    (metrics.MicroF1(), partial(sk_metrics.f1_score, average='micro')),
    (metrics.WeightedF1(), partial(sk_metrics.f1_score, average='weighted')),
    (metrics.MCC(), sk_metrics.matthews_corrcoef),
    (metrics.MAE(), sk_metrics.mean_absolute_error),
    (metrics.MSE(), sk_metrics.mean_squared_error),
]


@pytest.mark.parametrize('metric, sk_metric', [
    pytest.param(metric, sk_metric, id=f'{metric.__class__.__name__}')
    for metric, sk_metric in TEST_CASES
])
@pytest.mark.filterwarnings('ignore::RuntimeWarning')
@pytest.mark.filterwarnings(
Esempio n. 4
0
    ),
    (
        metrics.MicroFBeta(beta=0.5),
        partial(sk_metrics.fbeta_score,
                beta=0.5,
                average="micro",
                zero_division=0),
    ),
    (
        metrics.WeightedFBeta(beta=0.5),
        partial(sk_metrics.fbeta_score,
                beta=0.5,
                average="weighted",
                zero_division=0),
    ),
    (metrics.F1(), partial(sk_metrics.f1_score, zero_division=0)),
    (metrics.MacroF1(),
     partial(sk_metrics.f1_score, average="macro", zero_division=0)),
    (metrics.MicroF1(),
     partial(sk_metrics.f1_score, average="micro", zero_division=0)),
    (metrics.WeightedF1(),
     partial(sk_metrics.f1_score, average="weighted", zero_division=0)),
    (metrics.MCC(), sk_metrics.matthews_corrcoef),
    (metrics.MAE(), sk_metrics.mean_absolute_error),
    (metrics.MSE(), sk_metrics.mean_squared_error),
]


@pytest.mark.parametrize(
    "metric, sk_metric",
    [