Esempio n. 1
0
    def __init__(self, cm: "metrics.ConfusionMatrix" = None):

        self.cm = metrics.ConfusionMatrix() if cm is None else cm
        self.accuracy = metrics.Accuracy(cm=self.cm)
        self.kappa = metrics.CohenKappa(cm=self.cm)
        self.kappa_m = metrics.KappaM(cm=self.cm)
        self.kappa_t = metrics.KappaT(cm=self.cm)
        self.recall = metrics.Recall(cm=self.cm)
        self.micro_recall = metrics.MicroRecall(cm=self.cm)
        self.macro_recall = metrics.MacroRecall(cm=self.cm)
        self.precision = metrics.Precision(cm=self.cm)
        self.micro_precision = metrics.MicroPrecision(cm=self.cm)
        self.macro_precision = metrics.MacroPrecision(cm=self.cm)
        self.f1 = metrics.F1(cm=self.cm)
        self.micro_f1 = metrics.MicroF1(cm=self.cm)
        self.macro_f1 = metrics.MacroF1(cm=self.cm)
        self.geometric_mean = metrics.GeometricMean(cm=self.cm)
Esempio n. 2
0
    if isinstance(metric, base.RegressionMetric):
        yield ([random.random() for _ in range(n)],
               [random.random() for _ in range(n)], sample_weights)


def partial(f, **kwargs):
    return functools.update_wrapper(functools.partial(f, **kwargs), f)


TEST_CASES = [
    (metrics.Accuracy(), sk_metrics.accuracy_score),
    (metrics.Precision(), sk_metrics.precision_score),
    (metrics.MacroPrecision(),
     partial(sk_metrics.precision_score, average='macro')),
    (metrics.MicroPrecision(),
     partial(sk_metrics.precision_score, average='micro')),
    (metrics.WeightedPrecision(),
     partial(sk_metrics.precision_score, average='weighted')),
    (metrics.Recall(), sk_metrics.recall_score),
    (metrics.MacroRecall(), partial(sk_metrics.recall_score, average='macro')),
    (metrics.MicroRecall(), partial(sk_metrics.recall_score, average='micro')),
    (metrics.WeightedRecall(),
     partial(sk_metrics.recall_score, average='weighted')),
    (metrics.FBeta(beta=.5), partial(sk_metrics.fbeta_score, beta=.5)),
    (metrics.MacroFBeta(beta=.5),
     partial(sk_metrics.fbeta_score, beta=.5, average='macro')),
    (metrics.MicroFBeta(beta=.5),
     partial(sk_metrics.fbeta_score, beta=.5, average='micro')),
    (metrics.WeightedFBeta(beta=.5),
     partial(sk_metrics.fbeta_score, beta=.5, average='weighted')),
Esempio n. 3
0
 def __init__(self, beta: float, cm=None):
     super().__init__(cm)
     self.beta = beta
     self.precision = metrics.MicroPrecision(self.cm)
     self.recall = metrics.MicroRecall(self.cm)
Esempio n. 4
0
        yield (
            [random.random() for _ in range(n)],
            [random.random() for _ in range(n)],
            sample_weights,
        )


def partial(f, **kwargs):
    return functools.update_wrapper(functools.partial(f, **kwargs), f)


TEST_CASES = [
    (metrics.Accuracy(), sk_metrics.accuracy_score),
    (metrics.Precision(), sk_metrics.precision_score),
    (metrics.MacroPrecision(), partial(sk_metrics.precision_score, average="macro")),
    (metrics.MicroPrecision(), partial(sk_metrics.precision_score, average="micro")),
    (
        metrics.WeightedPrecision(),
        partial(sk_metrics.precision_score, average="weighted"),
    ),
    (metrics.Recall(), sk_metrics.recall_score),
    (metrics.MacroRecall(), partial(sk_metrics.recall_score, average="macro")),
    (metrics.MicroRecall(), partial(sk_metrics.recall_score, average="micro")),
    (metrics.WeightedRecall(), partial(sk_metrics.recall_score, average="weighted")),
    (metrics.FBeta(beta=0.5), partial(sk_metrics.fbeta_score, beta=0.5)),
    (
        metrics.MacroFBeta(beta=0.5),
        partial(sk_metrics.fbeta_score, beta=0.5, average="macro"),
    ),
    (
        metrics.MicroFBeta(beta=0.5),