Esempio n. 1
0
def test_discrete_space(n):
    sp = Discrete(n)
    for ii in range(n):
        assert sp.contains(ii)

    for ii in range(2 * n):
        assert sp.contains(sp.sample())
Esempio n. 2
0
class ActionDictTestEnv(gym.Env):
    action_space = Dict({"position": Discrete(1), "velocity": Discrete(1)})
    observation_space = Box(low=-1.0, high=2.0, shape=(3, ), dtype=np.float32)

    def step(self, action):
        observation = np.array([1.0, 1.5, 0.5])
        reward = 1
        done = True
        return observation, reward, done

    def reset(self):
        return np.array([1.0, 1.5, 0.5])
Esempio n. 3
0
def test_tuple():
    sp1 = Box(0.0, 1.0, shape=(3, 2))
    sp2 = Discrete(2)
    sp = Tuple([sp1, sp2])
    for _ in range(10):
        assert sp.contains(sp.sample())
    sp.reseed()
Esempio n. 4
0
def convert_space_from_gym(gym_space):
    if isinstance(gym_space, gym.spaces.Discrete):
        return Discrete(gym_space.n)
    #
    #
    elif isinstance(gym_space, gym.spaces.Box):
        return Box(gym_space.low, gym_space.high, gym_space.shape,
                   gym_space.dtype)
    #
    #
    elif isinstance(gym_space, gym.spaces.Tuple):
        spaces = []
        for sp in gym_space.spaces:
            spaces.append(convert_space_from_gym(sp))
        return Tuple(spaces)
    #
    #
    elif isinstance(gym_space, gym.spaces.MultiDiscrete):
        return MultiDiscrete(gym_space.nvec)
    #
    #
    elif isinstance(gym_space, gym.spaces.MultiBinary):
        return MultiBinary(gym_space.n)
    #
    #
    elif isinstance(gym_space, gym.spaces.Dict):
        spaces = {}
        for key in gym_space.spaces:
            spaces[key] = convert_space_from_gym(gym_space[key])
        return Dict(spaces)
    else:
        raise ValueError("Unknown space class: {}".format(type(gym_space)))
Esempio n. 5
0
def test_dict():
    nested_observation_space = Dict({
        'sensors':
        Dict({
            'position':
            Box(low=-100, high=100, shape=(3, )),
            'velocity':
            Box(low=-1, high=1, shape=(3, )),
            'front_cam':
            Tuple((Box(low=0, high=1,
                       shape=(10, 10, 3)), Box(low=0,
                                               high=1,
                                               shape=(10, 10, 3)))),
            'rear_cam':
            Box(low=0, high=1, shape=(10, 10, 3)),
        }),
        'ext_controller':
        MultiDiscrete((5, 2, 2)),
        'inner_state':
        Dict({
            'charge':
            Discrete(100),
            'system_checks':
            MultiBinary(10),
            'job_status':
            Dict({
                'task': Discrete(5),
                'progress': Box(low=0, high=100, shape=()),
            })
        })
    })
    sp = nested_observation_space
    for _ in range(10):
        assert sp.contains(sp.sample())
    sp.reseed()

    sp2 = Dict(sp.spaces)

    for _ in range(10):
        assert sp.contains(sp2.sample())
    sp2.reseed()
Esempio n. 6
0
def test_dict():
    nested_observation_space = Dict({
        "sensors":
        Dict({
            "position":
            Box(low=-100, high=100, shape=(3, )),
            "velocity":
            Box(low=-1, high=1, shape=(3, )),
            "front_cam":
            Tuple((
                Box(low=0, high=1, shape=(10, 10, 3)),
                Box(low=0, high=1, shape=(10, 10, 3)),
            )),
            "rear_cam":
            Box(low=0, high=1, shape=(10, 10, 3)),
        }),
        "ext_controller":
        MultiDiscrete((5, 2, 2)),
        "inner_state":
        Dict({
            "charge":
            Discrete(100),
            "system_checks":
            MultiBinary(10),
            "job_status":
            Dict({
                "task": Discrete(5),
                "progress": Box(low=0, high=100, shape=()),
            }),
        }),
    })
    sp = nested_observation_space
    for _ in range(10):
        assert sp.contains(sp.sample())
    sp.reseed()

    sp2 = Dict(sp.spaces)

    for _ in range(10):
        assert sp.contains(sp2.sample())
    sp2.reseed()