Esempio n. 1
0
 def test_log(self):
     log_dir = "./newtest/test_log.txt"
     if os.path.exists(log_dir):
         shutil.rmtree(log_dir)
     logger = Logger(log_dir)
     logger.log("test text")
     logger.log_performance(1, 1)
     logger.log_performance(2, 2)
     logger.log_performance(3, 3)
     logger.close_files()
     logger.plot('aaa')
Esempio n. 2
0
    state = env.reset()

    for timestep in range(timesteps):
        action = agent.step(state)
        next_state, reward, done = env.step(action)
        ts = (state, action, reward, next_state, done)
        agent.feed(ts)

        if timestep % evaluate_every == 0:
            rewards = []
            state = eval_env.reset()
            for _ in range(evaluate_num):
                action, _ = agent.eval_step(state)
                _, reward, done = env.step(action)
                if done:
                    rewards.append(reward)
            logger.log_performance(env.timestep, np.mean(rewards))

    # Close files in the logger
    logger.close_files()

    # Plot the learning curve
    logger.plot('DQN')

    # Save model
    save_dir = 'models/uno_single_dqn'
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    saver = tf.train.Saver()
    saver.save(sess, os.path.join(save_dir, 'model'))
Esempio n. 3
0
# The paths for saving the logs and learning curves
log_dir = './experiments/leduc_holdem_cfr_result/'

# Set a global seed
set_global_seed(0)

# Initilize CFR Agent
agent = CFRAgent(env)
agent.load()  # If we have saved model, we first load the model

# Evaluate CFR against pre-trained NFSP
eval_env.set_agents([agent, models.load('leduc-holdem-nfsp').agents[0]])

# Init a Logger to plot the learning curve
logger = Logger(log_dir)

for episode in range(episode_num):
    agent.train()
    print('\rIteration {}'.format(episode), end='')
    # Evaluate the performance. Play with NFSP agents.
    if episode % evaluate_every == 0:
        agent.save()  # Save model
        logger.log_performance(env.timestep,
                               tournament(eval_env, evaluate_num)[0])

# Close files in the logger
logger.close_files()

# Plot the learning curve
logger.plot('CFR')
Esempio n. 4
0
                scope="dqn", collection=tf.GraphKeys.TRAINABLE_VARIABLES)
            variables = [var.eval() for var in variables]
            for task in tasks:
                INPUT_QUEUE.put((task, False, variables, agent.total_t))
            for _ in range(evaluate_num):
                payoffs = OUTPUT_QUEUE.get()
                reward += payoffs[0]
            logger.log('\n########## Evaluation ##########')
            logger.log('Average reward is {}'.format(
                float(reward) / evaluate_num))

        # Close files in the logger
        logger.close_files()

        # Plot the learning curve
        logger.plot('DQN_multi_process')

        # Save model
        save_dir = 'models/leduc_dqn_multi'
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        saver = tf.train.Saver()
        saver.save(sess, os.path.join(save_dir, 'model'))

        # Close multi-processes
        for _ in range(PROCESS_NUM):
            INPUT_QUEUE.put(None)

        INPUT_QUEUE.join()

        for p in PROCESSES:
Esempio n. 5
0
def train_mahjong():

    # Make environment
    env = rlcard.make('mahjong', config={'seed': 0})
    eval_env = rlcard.make('mahjong', config={'seed': 0})

    # Set the iterations numbers and how frequently we evaluate the performance
    evaluate_every = 1000
    evaluate_num = 1000
    episode_num = 10000

    # The intial memory size
    memory_init_size = 1000

    # Train the agent every X steps
    train_every = 64

    # The paths for saving the logs and learning curves
    log_dir = './experiments/mahjong_nfsp_result/'

    # Set a global seed
    set_global_seed(0)

    with tf.Session() as sess:

        # Initialize a global step
        global_step = tf.Variable(0, name='global_step', trainable=False)

        # Set up the agents
        agents = []
        for i in range(env.player_num):
            agent = NFSPAgent(sess,
                              scope='nfsp' + str(i),
                              action_num=env.action_num,
                              state_shape=env.state_shape,
                              hidden_layers_sizes=[512, 512],
                              anticipatory_param=0.5,
                              batch_size=256,
                              rl_learning_rate=0.00005,
                              sl_learning_rate=0.00001,
                              min_buffer_size_to_learn=memory_init_size,
                              q_replay_memory_size=int(1e5),
                              q_replay_memory_init_size=memory_init_size,
                              train_every=train_every,
                              q_train_every=train_every,
                              q_batch_size=256,
                              q_mlp_layers=[512, 512])
            agents.append(agent)
        random_agent = RandomAgent(action_num=eval_env.action_num)

        env.set_agents(agents)
        eval_env.set_agents(
            [agents[0], random_agent, random_agent, random_agent])

        # Initialize global variables
        sess.run(tf.global_variables_initializer())

        # Init a Logger to plot the learning curvefrom rlcard.agents.random_agent import RandomAgent

        logger = Logger(log_dir)

        for episode in tqdm(range(episode_num)):

            # First sample a policy for the episode
            for agent in agents:
                agent.sample_episode_policy()

            # Generate data from the environment
            trajectories, _ = env.run(is_training=True)

            # Feed transitions into agent memory, and train the agent
            for i in range(env.player_num):
                for ts in trajectories[i]:
                    agents[i].feed(ts)

            # Evaluate the performance. Play with random agents.
            if episode % evaluate_every == 0:
                logger.log_performance(env.timestep,
                                       tournament(eval_env, evaluate_num)[0])

        # Close files in the logger
        logger.close_files()

        # Plot the learning curve
        logger.plot('NFSP')

        # Save model
        save_dir = 'models/mahjong_nfsp'
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        saver = tf.train.Saver()
        saver.save(sess, os.path.join(save_dir, 'model'))
Esempio n. 6
0
        # First sample a policy for the episode
        for agent in agents:
            agent.sample_episode_policy()

        # Generate data from the environment
        trajectories, _ = env.run(is_training=True)

        # Feed transitions into agent memory, and train the agent
        for i in range(env.player_num):
            for ts in trajectories[i]:
                agents[i].feed(ts)

        # Evaluate the performance. Play with random agents.
        if episode % evaluate_every == 0:
            logger.log_performance(env.timestep,
                                   tournament(eval_env, evaluate_num)[0])

    # Close files in the logger
    logger.close_files()

    # Plot the learning curve
    logger.plot('NFSP')

    # Save model
    save_dir = 'models/limit_holdem_nfsp'
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    saver = tf.train.Saver()
    saver.save(sess, os.path.join(save_dir, 'model'))
Esempio n. 7
0
log_dir = './experiments/leduc_holdem_br_result/'

# Set a global seed
set_global_seed(0)

# Initilize CFR Agent
opponent = CFRAgent(env)
#opponent = RandomAgent(action_num=env.action_num)
#opponent.load()  # If we have saved model, we first load the model

#agent = RandomAgent(action_num=env.action_num)
agent = BRAgent(eval_env, opponent)
#agent = CFRAgent(env)

eval_env.set_agents([agent, opponent])
# Init a Logger to plot the learning curve
logger = Logger(log_dir)

for episode in range(episode_num):
    opponent.train()
    #agent.train()
    print('\rIteration {}'.format(episode), end='')
    # Evaluate the performance. Play with NFSP agents.
    if episode % evaluate_every == 0:
        logger.log_performance(env.timestep,
                               tournament(eval_env, evaluate_num)[0])

# Close files in the logger
logger.close_files()
logger.plot('BR')
Esempio n. 8
0
# Init a Logger to plot the learning curve
logger = Logger(log_dir)

for episode in range(episode_num):
    # Generate data from the environment
    trajectories, _ = env.run(is_training=True)

    # Feed transitions into agent memory, and train the agent
    for ts in trajectories[0]:
        agent.feed(ts)

    # Evaluate the performance. Play with random agents.
    if episode % evaluate_every == 0:
        logger.log_performance(env.timestep,
                               tournament(eval_env, evaluate_num)[0])

# Close files in the logger
logger.close_files()

# Plot the learning curve
logger.plot('DQN_Keras')

# Save model
save_dir = 'models/blackjack_dqn_keras'
if not os.path.exists(save_dir):
    os.makedirs(save_dir)
model_path = os.path.join(save_dir, 'model.keras')
agent.save_model(model_path)
print("model saved")
Esempio n. 9
0
                       state_shape=env.state_shape,
                       discount_factor=0.99,
                       learning_rate=1e-6,
                       device=None)
env.set_agents([agent])
eval_env.set_agents([agent])

logger = Logger(log_dir)

for episode in range(episode_num):
    trajectories, _ = env.run(is_training=True)

    for ts in trajectories[0]:
        agent.feed(ts)

    loss = agent.train()
    # logger.log(f"Loss: {loss}")

    if episode % evaluate_every == 0:
        logger.log_performance(env.timestep,
                               tournament(eval_env, evaluate_num)[0])

logger.close_files()
logger.plot("REINFORCE")

# Save model
save_dir = 'models/blackjack_reinforce'
if not os.path.exists(save_dir):
    os.makedirs(save_dir)
torch.save(agent.get_state_dict(), os.path.join(save_dir, 'model.pth'))