Esempio n. 1
0
def train(args):
    # Make environments, CFR only supports Leduc Holdem
    env = rlcard.make('leduc-holdem', config={'seed': 0, 'allow_step_back':True})
    eval_env = rlcard.make('leduc-holdem', config={'seed': 0})

    # Seed numpy, torch, random
    set_seed(args.seed)

    # Initilize CFR Agent
    agent = CFRAgent(env, os.path.join(args.log_dir, 'cfr_model'))
    agent.load()  # If we have saved model, we first load the model

    # Evaluate CFR against random
    eval_env.set_agents([agent, RandomAgent(num_actions=env.num_actions)])

    # Start training
    with Logger(args.log_dir) as logger:
        for episode in range(args.num_episodes):
            agent.train()
            print('\rIteration {}'.format(episode), end='')
            # Evaluate the performance. Play with Random agents.
            if episode % args.evaluate_every == 0:
                agent.save() # Save model
                logger.log_performance(env.timestep, tournament(eval_env, args.num_eval_games)[0])

        # Get the paths
        csv_path, fig_path = logger.csv_path, logger.fig_path
    # Plot the learning curve
    plot_curve(csv_path, fig_path, 'cfr')
 def __init__(self):
     super().__init__()
     self.wins = 0
     self.losses = 0
     '''
     Instantiate agent.
     '''
     # Setup RL NFSP agent
     # Set the iterations numbers and how frequently we evaluate/save plot
     evaluate_every = 10000
     evaluate_num = 10000
     episode_num = 100000
     # The intial memory size
     memory_init_size = 1000
     # Train the agent every X steps
     train_every = 64
     # The paths for saving the logs and learning curves
     log_dir = './training/nfsp/'
     # Set a global seed
     set_global_seed(0)
     # Set agent - TODO - determine PPE parameters
     self.agent = NFSPAgent(scope='nfsp',
                            action_num=3,
                            state_shape=54,
                            hidden_layers_sizes=[512, 512],
                            min_buffer_size_to_learn=memory_init_size,
                            q_replay_memory_init_size=memory_init_size,
                            train_every=train_every,
                            q_train_every=train_every,
                            q_mlp_layers=[512, 512],
                            device=torch.device('cpu'))
     # Init a Logger to plot the learning curve
     self.logger = Logger(log_dir)
Esempio n. 3
0
def train_leduc():
    # Make environment and enable human mode
    env = rlcard.make('leduc-holdem',
                      config={
                          'seed': 0,
                          'allow_step_back': True
                      })
    eval_env = rlcard.make('leduc-holdem', config={'seed': 0})

    # Set the iterations numbers and how frequently we evaluate the performance and save model
    evaluate_every = 100
    save_plot_every = 1000
    evaluate_num = 10000
    episode_num = 10000

    # The paths for saving the logs and learning curves
    log_dir = './experiments/leduc_holdem_oscfr_result/'

    # Set a global seed
    set_global_seed(0)

    # Initilize CFR Agent
    model_path = 'models/leduc_holdem_oscfr'
    agent = OutcomeSampling_CFR(env, model_path=model_path)
    agent.load()  # If we have saved model, we first load the model

    # Evaluate CFR against pre-trained NFSP
    eval_env.set_agents([agent, models.load('leduc-holdem-nfsp').agents[0]])

    # Init a Logger to plot the learning curve
    logger = Logger(log_dir)

    for episode in range(episode_num):
        agent.train()
        print('\rIteration {}'.format(episode), end='')
        # Evaluate the performance. Play with NFSP agents.
        if episode % evaluate_every == 0:
            agent.save()  # Save model
            logger.log_performance(env.timestep,
                                   tournament(eval_env, evaluate_num)[0])

    # Close files in the logger
    logger.close_files()

    # Plot the learning curve
    logger.plot('OSCFR')
Esempio n. 4
0
                           anticipatory_param=0.1,
                           min_buffer_size_to_learn=memory_init_size,
                           q_replay_memory_init_size=memory_init_size,
                           train_every=train_every,
                           q_train_every=train_every,
                           q_mlp_layers=[512, 512])
    mcts_agent = MCTS_Agent(env.action_num, duration, explore, model_action,
                            model_hand_rank)
    env.set_agents([mcts_agent, nfsp_agent])
    eval_env.set_agents([mcts_agent, nfsp_agent])

    # Initialize global variables
    sess.run(tf.global_variables_initializer())

    # Init a Logger to plot the learning curve
    logger_mcts = Logger(log_dir_mcts)
    logger_nfsp = Logger(log_dir_nfsp)

    for episode in range(episode_num):

        # Generate data from the environment
        trajectories, _ = env.run(is_training=True)

        # Feed transitions into agent memory, and train the agent
        for ts in trajectories[0]:
            nfsp_agent.feed(ts)

        # Evaluate the performance. Play with random agents.
        if episode % evaluate_every == 0:
            logger_mcts.log_performance(env.timestep,
                                        tournament(eval_env, evaluate_num)[0])
Esempio n. 5
0
              train_every=train_every + 44,
              q_train_every=train_every,
              q_mlp_layers=[512, 512],
              evaluate_with='average_policy'))

random_agent = RandomAgent(action_num=eval_env2.action_num)

env.set_agents(agents)
eval_env.set_agents([agents[0], random_agent])
eval_env2.set_agents([random_agent, agents[1]])
# eval_env3.set_agents([agents[1], random_agent])

# Initialize global variables

# Init a Logger to plot the learning curve
logger = Logger(log_dir)

for episode in range(episode_num):
    print(episode, end='\r')
    #print('oh')

    # First sample a policy for the episode
    for agent in agents:
        agent.sample_episode_policy()

    # Generate data from the environment
    trajectories, _ = env.run(is_training=True)

    # Feed transitions into agent memory, and train the agent
    for i in range(env.player_num):
        # update ray rl model
Esempio n. 6
0
def main():
    
    parser = createParser()
    namespace = parser.parse_args(sys.argv[1:])
    
    #random seed
    random_seed = namespace.random_seed
    #names
    env_name = namespace.env_name
    env_num = 1
    test_name = namespace.test_name
    dir_name = str(env_name)+'_a2c_'+str(test_name)+str(random_seed)
    # Set the iterations numbers and how frequently we evaluate/save plot
    evaluate_every = namespace.evaluate_every
    evaluate_num = namespace.evaluate_num
    episode_num = namespace.episode_num
    # Train the agent every X steps
    train_every = namespace.train_every
    save_every = namespace.save_every
    
    
    # Make environment
    env_rand = rlcard.make(env_name, config={'seed': random_seed})
    eval_env = rlcard.make(env_name, config={'seed': random_seed})
        
    # The paths for saving the logs and learning curves
    log_dir = './experiments/rl/'+dir_name+'_result'
    
    # Save model
    save_dir = 'models/rl/'+dir_name+'_result'
    
    # Set a global seed
    set_global_seed(random_seed)
    
    # Initialize a global step
    global_step = tf.Variable(0, name='global_step', trainable=False)
    # Set up the agents
    
    agent_rand = RandomAgent(action_num=eval_env.action_num)    
    
    agent_test = A2CLSTMQPGAgent(
                     action_num=eval_env.action_num,
                     state_shape=eval_env.state_shape,
                     
                     discount_factor=0.95,
                
                     critic_lstm_layers=[1,512],
                     critic_mlp_layers=[3,512],
                     critic_activation_func='tanh', 
                     critic_kernel_initializer='glorot_uniform',
                     critic_learning_rate=0.001,
                     critic_bacth_size=128,
                     
                     actor_lstm_layers=[1,512],
                     actor_mlp_layers=[3,512],
                     actor_activation_func='tanh', 
                     actor_kernel_initializer='glorot_uniform', 
                     actor_learning_rate=0.0001,
                     actor_bacth_size=512,
                     
                     entropy_coef=0.5,
                     entropy_decoy=math.pow(0.1/0.5, 1.0/(episode_num//train_every)),
                     
                     max_grad_norm = 1,)  
    
    if namespace.load_model is not None:
        agent_test.load_model(namespace.load_model)
    
    env_rand.set_agents([agent_test, agent_rand])
    
    eval_env.set_agents([agent_test, agent_rand])

    # Init a Logger to plot the learning curve
    logger = Logger(log_dir+'/'+test_name)
    
    envs = [env_rand, 
            ]
    
    env_num = len(envs)
    for episode in range(episode_num // env_num):

        # Generate data from the
        for env in envs:
            trajectories, _ = env.run(is_training=True)

            # Feed transitions into agent memory, and train the agent
            for ts in trajectories[0]:
                agent_test.feed(ts)
            
        if episode % (train_every // env_num) == 0:
            agent_test.train()
        
        if episode % (save_every // env_num) == 0 :
            # Save model
            if not os.path.exists(save_dir+'/'+test_name+str(episode*env_num)):
                os.makedirs(save_dir+'/'+test_name+str(episode*env_num))
            agent_test.save_model(save_dir+'/'+test_name+str(episode*env_num))
            
        # Evaluate the performance. Play with random agents.
        if episode % (evaluate_every // env_num) == 0:
            print('episode: ', episode*env_num)
            logger.log_performance(episode*env_num, tournament(eval_env, evaluate_num)[0])


    # Close files in the logger
    logger.close_files()

    # Plot the learning curve
    logger.plot(dir_name)
         
    # Save model
    if not os.path.exists(save_dir+'/'+test_name+str(episode_num)):
        os.makedirs(save_dir+'/'+test_name+str(episode_num))
    agent_test.save_model(save_dir+'/'+test_name+str(episode_num))
Esempio n. 7
0
def main():
    # Make environment
    env = rlcard.make('blackjack', config={'env_num': 4, 'seed': 0})
    eval_env = rlcard.make('blackjack', config={'env_num': 4, 'seed': 0})

    # Set the iterations numbers and how frequently we evaluate performance
    evaluate_every = 100
    evaluate_num = 10000
    iteration_num = 100000

    # The intial memory size
    memory_init_size = 100

    # Train the agent every X steps
    train_every = 1

    # The paths for saving the logs and learning curves
    log_dir = './experiments/blackjack_dqn_result/'

    # Set a global seed
    set_global_seed(0)

    with tf.compat.v1.Session() as sess:

        # Initialize a global step
        global_step = tf.Variable(0, name='global_step', trainable=False)

        # Set up the agents
        agent = DQNAgent(sess,
                         scope='dqn',
                         action_num=env.action_num,
                         replay_memory_init_size=memory_init_size,
                         train_every=train_every,
                         state_shape=env.state_shape,
                         mlp_layers=[10, 10])
        env.set_agents([agent])
        eval_env.set_agents([agent])

        # Initialize global variables
        sess.run(tf.compat.v1.global_variables_initializer())

        # Initialize a Logger to plot the learning curve
        logger = Logger(log_dir)

        for iteration in range(iteration_num):

            # Generate data from the environment
            trajectories, _ = env.run(is_training=True)

            # Feed transitions into agent memory, and train the agent
            for ts in trajectories[0]:
                agent.feed(ts)

            # Evaluate the performance. Play with random agents.
            if iteration % evaluate_every == 0:
                logger.log_performance(env.timestep,
                                       tournament(eval_env, evaluate_num)[0])

        # Close files in the logger
        logger.close_files()

        # Plot the learning curve
        logger.plot('DQN')

        # Save model
        save_dir = 'models/blackjack_dqn'
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        saver = tf.compat.v1.train.Saver()
        saver.save(sess, os.path.join(save_dir, 'model'))
Esempio n. 8
0
def train(args):

    # Check whether gpu is available
    device = get_device()

    # Seed numpy, torch, random
    set_seed(args.seed)

    # Make the environment with seed
    env_func = env_name_to_env_func[args.env]
    env = env_func.env()
    env.seed(args.seed)
    env.reset()

    # Initialize the agent and use random agents as opponents
    learning_agent_name = env.agents[0]
    if args.algorithm == 'dqn':
        from rlcard.agents.pettingzoo_agents import DQNAgentPettingZoo
        agent = DQNAgentPettingZoo(
            num_actions=env.action_space(learning_agent_name).n,
            state_shape=env.observation_space(
                learning_agent_name)["observation"].shape,
            mlp_layers=[64, 64],
            device=device)
    elif args.algorithm == 'nfsp':
        from rlcard.agents.pettingzoo_agents import NFSPAgentPettingZoo
        agent = NFSPAgentPettingZoo(
            num_actions=env.action_space(learning_agent_name).n,
            state_shape=env.observation_space(
                learning_agent_name)["observation"].shape,
            hidden_layers_sizes=[64, 64],
            q_mlp_layers=[64, 64],
            device=device)

    agents = {learning_agent_name: agent}
    for i in range(1, env.num_agents):
        agents[env.agents[i]] = RandomAgentPettingZoo(
            num_actions=env.action_space(env.agents[i]).n)

    # Start training
    num_timesteps = 0
    with Logger(args.log_dir) as logger:
        for episode in range(args.num_episodes):

            if args.algorithm == 'nfsp':
                agent.sample_episode_policy()

            # Generate data from the environment
            trajectories = run_game_pettingzoo(env, agents, is_training=True)
            trajectories = reorganize_pettingzoo(trajectories)
            num_timesteps += sum([len(t) for t in trajectories.values()])

            for ts in trajectories[learning_agent_name]:
                agent.feed(ts)

            # Evaluate the performance. Play with random agents.
            if episode % args.evaluate_every == 0:
                average_rewards = tournament_pettingzoo(
                    env, agents, args.num_eval_games)
                logger.log_performance(num_timesteps,
                                       average_rewards[learning_agent_name])

        # Get the paths
        csv_path, fig_path = logger.csv_path, logger.fig_path

    # Plot the learning curve
    plot_curve(csv_path, fig_path, args.algorithm)

    # Save model
    save_path = os.path.join(args.log_dir, 'model.pth')
    torch.save(agent, save_path)
    print('Model saved in', save_path)
Esempio n. 9
0
    agents = []
    for i in range(env.player_num):
        agent = DeepCFR(sess, scope='deepcfr' + str(i), env=env)
        agents.append(agent)
    random_agent = RandomAgent(action_num=eval_env.action_num)

    env.set_agents(agents)
    eval_env.set_agents([agents[0], random_agent])

    # Initialize global variables
    sess.run(tf.global_variables_initializer())
    # restore checkpoint
    saver = tf.train.Saver()
    save_dir = 'models/nolimit_holdem_deepcfr'
    # Init a Logger to plot the learning curve
    logger = Logger(log_dir)

    for episode in range(episode_num):
        for agent in agents:
            agent.train()

        # Evaluate the performance. Play with random agents.
        if episode % evaluate_every == 0:
            _reward = tournament(eval_env, evaluate_num)[0]
            logger.log_performance(episode, _reward)

            # Save model
            if _reward > _reward_max:
                if not os.path.exists(save_dir):
                    os.makedirs(save_dir)
                saver.save(sess, os.path.join(save_dir, 'model'))
Esempio n. 10
0
def nfsp():
    import tensorflow as tf
    if tf.test.gpu_device_name():
        print('GPU found')
    else:
        print("No GPU found")

    #os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

    # Make environment
    env = rlcard.make('no-limit-holdem',
                      config={
                          'record_action': False,
                          'game_player_num': 2
                      })
    eval_env = rlcard.make('no-limit-holdem',
                           config={
                               'seed': 12,
                               'game_player_num': 2
                           })
    eval_env2 = rlcard.make('no-limit-holdem',
                            config={
                                'seed': 43,
                                'game_player_num': 2
                            })

    # Set the iterations numbers and how frequently we evaluate the performance

    # The intial memory size
    memory_init_size = 1000

    # The paths for saving the logs and learning curves
    log_dir = './experiments/nolimit_holdem_nfsp_result/1v1MCNFSPv3'

    # Set a global seed
    set_global_seed(0)

    graph = tf.Graph()
    sess = tf.Session(graph=graph)

    evaluate_every = 1000
    evaluate_num = 250
    episode_num = 5000

    # The intial memory size
    memory_init_size = 1500

    # Train the agent every X steps
    train_every = 256
    agents = []
    with graph.as_default():

        # Model1v1V3cp10good
        agents.append(
            NFSPAgent(sess,
                      scope='nfsp' + str(0),
                      action_num=env.action_num,
                      state_shape=env.state_shape,
                      hidden_layers_sizes=[512, 512],
                      anticipatory_param=0.1,
                      rl_learning_rate=.1,
                      min_buffer_size_to_learn=memory_init_size,
                      q_replay_memory_init_size=memory_init_size,
                      train_every=train_every,
                      q_train_every=train_every,
                      q_mlp_layers=[512, 512]))

        agents.append(
            NFSPAgent(sess,
                      scope='nfsp' + str(1),
                      action_num=env.action_num,
                      state_shape=env.state_shape,
                      hidden_layers_sizes=[512, 512],
                      anticipatory_param=0.075,
                      rl_learning_rate=0.075,
                      min_buffer_size_to_learn=memory_init_size,
                      q_replay_memory_init_size=memory_init_size,
                      train_every=train_every // 2,
                      q_train_every=train_every // 2,
                      q_mlp_layers=[512, 512]))

    # check_point_path = os.path.join('models\\nolimit_holdem_nfsp\\1v1MCNFSPv3\\cp\\10')
    print(
        '-------------------------------------------------------------------------------------'
    )
    # print(check_point_path)
    with sess.as_default():
        with graph.as_default():
            saver = tf.train.Saver()
            # saver.restore(sess, tf.train.latest_checkpoint(check_point_path))

            global_step = tf.Variable(0, name='global_step', trainable=False)
            random_agent = RandomAgent(action_num=eval_env2.action_num)

            #easy_agent = nfsp_agents[0]
            print(agents)
            # print(nfsp_agents)
            env.set_agents(agents)
            eval_env.set_agents(agents)
            eval_env2.set_agents([agents[0], random_agent])

            # Initialize global variables
            sess.run(tf.global_variables_initializer())

            # Init a Logger to plot the learning curve
            logger = Logger(log_dir)

            for episode in range(episode_num):

                # First sample a policy for the episode
                for agent in agents:
                    agent.sample_episode_policy()
                table = []
                # Generate data from the environment
                trajectories, _ = env.run(is_training=True)

                # Feed transitions into agent memory, and train the agent
                for i in range(env.player_num):
                    for ts in trajectories[i]:
                        agents[i].feed(ts, table)

                # Evaluate the performance. Play with random agents.
                if episode % evaluate_every == 0:
                    logger.log(
                        '\n\n\n---------------------------------------------------------------\nTournament '
                        + str(episode / evaluate_every))
                    res = tournament(eval_env, evaluate_num)
                    res2 = tournament(eval_env2, evaluate_num // 4)
                    logger.log_performance(env.timestep, res[0])
                    logger.log_performance(env.timestep, res2[0])
                    logger.log('' + str(episode_num) + " - " + str(episode) +
                               '\n')
                    logger.log(
                        '\n\n----------------------------------------------------------------'
                    )

                if episode % (evaluate_every) == 0 and not episode == 0:
                    save_dir = 'models/nolimit_holdem_nfsp/1v1MCNFSPv3/cp/10/good' + str(
                        episode // evaluate_every)
                    if not os.path.exists(save_dir):
                        os.makedirs(save_dir)
                    saver = tf.train.Saver()
                    saver.save(sess, os.path.join(save_dir, 'model'))

            logger.log(
                '\n\n\n---------------------------------------------------------------\nTournament '
                + str(episode / evaluate_every))
            res = tournament(eval_env, evaluate_num)
            logger.log_performance(env.timestep, res[0])
            logger.log('' + str(episode_num) + " - " + str(episode))

            # Close files in the logger
            logger.close_files()

            # Plot the learning curve
            logger.plot('NFSP')

            # Save model
            save_dir = 'models/nolimit_holdem_nfsp/1v1MCNFSPv3/cp/10/good'
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            saver = tf.train.Saver()
            saver.save(sess, os.path.join(save_dir, 'model'))
Esempio n. 11
0
def main():
    # Make environment
    env = rlcard.make('no-limit-holdem',
                      config={
                          'seed': 0,
                          'env_num': 16,
                          'game_player_num': 4
                      })
    eval_env = rlcard.make('no-limit-holdem',
                           config={
                               'seed': 0,
                               'env_num': 16
                           })

    # Set the iterations numbers and how frequently we evaluate the performance
    evaluate_every = 100
    evaluate_num = 1000
    episode_num = 200000

    # The intial memory size
    memory_init_size = 1000

    # Train the agent every X steps
    train_every = 1

    _reward_max = -0.8

    # The paths for saving the logs and learning curves
    log_dir = './experiments/nolimit_holdem_dqn_result/'

    # Set a global seed
    set_global_seed(0)

    with tf.Session() as sess:

        # Initialize a global step
        global_step = tf.Variable(0, name='global_step', trainable=False)

        # Set up the agents
        agent = DQNAgent(sess,
                         scope='dqn',
                         action_num=env.action_num,
                         replay_memory_init_size=memory_init_size,
                         train_every=train_every,
                         state_shape=env.state_shape,
                         mlp_layers=[512, 512])

        agent2 = NFSPAgent(sess,
                           scope='nfsp',
                           action_num=env.action_num,
                           state_shape=env.state_shape,
                           hidden_layers_sizes=[512, 512],
                           anticipatory_param=0.1,
                           min_buffer_size_to_learn=memory_init_size,
                           q_replay_memory_init_size=memory_init_size,
                           train_every=64,
                           q_train_every=64,
                           q_mlp_layers=[512, 512])

        # Initialize global variables
        sess.run(tf.global_variables_initializer())

        save_dir = 'models/nolimit_holdem_dqn'
        saver = tf.train.Saver()
        #saver.restore(sess, os.path.join(save_dir, 'model'))

        random_agent = RandomAgent(action_num=eval_env.action_num)
        env.set_agents([agent, agent, agent2, random_agent])
        eval_env.set_agents([agent, agent2])

        # Init a Logger to plot the learning curve
        logger = Logger(log_dir)

        for episode in range(episode_num):
            agent2.sample_episode_policy()
            # Generate data from the environment
            trajectories, _ = env.run(is_training=True)

            # Feed transitions into agent memory, and train the agent
            for ts in trajectories[0]:
                agent.feed(ts)

            for ts in trajectories[2]:
                agent2.feed(ts)

            # Evaluate the performance. Play with random agents.
            if episode % evaluate_every == 0:
                _reward = tournament(eval_env, evaluate_num)[0]
                logger.log_performance(episode, _reward)
                if _reward > _reward_max:
                    if not os.path.exists(save_dir):
                        os.makedirs(save_dir)
                    saver.save(sess, os.path.join(save_dir, 'model'))
                    _reward_max = _reward

        # Close files in the logger
        logger.close_files()

        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        saver.save(sess, os.path.join(save_dir, 'model_final'))
Esempio n. 12
0
def main():
    # Make environment
    env = rlcard.make('leduc-holdem', config={'seed': 0, 'env_num': 4})
    eval_env = rlcard.make('leduc-holdem', config={'seed': 0, 'env_num': 4})

    # Set the iterations numbers and how frequently we evaluate the performance
    evaluate_every = 100
    evaluate_num = 10000
    episode_num = 800000

    # The intial memory size
    memory_init_size = 1000

    # Train the agent every X steps
    train_every = 1

    _reward_max = -0.5

    # The paths for saving the logs and learning curves
    log_dir = './experiments/leduc_holdem_dqn_result/'

    # Set a global seed
    set_global_seed(0)

    with tf.Session() as sess:

        # Initialize a global step
        global_step = tf.Variable(0, name='global_step', trainable=False)

        # Set up the agents
        agent = DQNAgent(sess,
                         scope='dqn',
                         action_num=env.action_num,
                         replay_memory_init_size=memory_init_size,
                         train_every=train_every,
                         state_shape=env.state_shape,
                         mlp_layers=[128, 128])
        # random_agent = RandomAgent(action_num=eval_env.action_num)
        cfr_agent = models.load('leduc-holdem-cfr').agents[0]
        env.set_agents([agent, agent])
        eval_env.set_agents([agent, cfr_agent])

        # Initialize global variables
        sess.run(tf.global_variables_initializer())

        # Init a Logger to plot the learning curve
        logger = Logger(log_dir)

        saver = tf.train.Saver()
        save_dir = 'models/leduc_holdem_dqn'
        saver.restore(sess, os.path.join(save_dir, 'model'))

        for episode in range(episode_num):

            # Generate data from the environment
            trajectories, _ = env.run(is_training=True)

            # Feed transitions into agent memory, and train the agent
            for ts in trajectories[0]:
                agent.feed(ts)

            # Evaluate the performance. Play with random agents.
            if episode % evaluate_every == 0:
                _reward = tournament(eval_env, evaluate_num)[0]
                logger.log_performance(episode, _reward)
                if _reward > _reward_max:
                    # Save model
                    if not os.path.exists(save_dir):
                        os.makedirs(save_dir)
                    saver.save(sess, os.path.join(save_dir, 'model'))
                    _reward_max = _reward

        # Close files in the logger
        logger.close_files()

        # Plot the learning curve
        logger.plot('DQN')
                        learning_rate=1e-5,
                        strategy_memory_capacity=2 * int(1e6))
        agents.append(agent)

    for _ in range(env.player_num - 1):
        agent = RandomAgent(action_num=eval_env.action_num)
        random_agents.append(agent)

    env.set_agents(agents)
    eval_env.set_agents([agents[0], *random_agents])

    # Initialize global variables
    sess.run(tf.global_variables_initializer())

    # Init a Logger to plot the learning curve
    logger = Logger(log_dir)

    # Create dir for results
    save_dir = 'models/thousand_schnapsen_deep_cfr3'
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    saver = tf.train.Saver()
    best_win_rate = 0

    for episode in range(episode_num):
        agents[0].train()

        # Evaluate the performance. Play with random agents.
        if episode % evaluate_every == 0:
            payoffs, wins = tournament(eval_env, evaluate_num)
            logger.log_performance(env.timestep, payoffs[0])
Esempio n. 14
0
duration = args.d
explore = args.e
model_action = args.ma
model_hand_rank = args.mh

# Make environment
env = rlcard.make('limit-holdem', config={'seed': 0})
eval_env = rlcard.make('limit-holdem', config={'seed': 10})
#episode_num = 5
num_tournaments = 25
# episode_num = 100
# evaluate_every = 10
evaluate_num = 1000

log_dir = name
logger = Logger(log_dir)

# Set a global seed
set_global_seed(0)

# Set up agents
agent1 = limitholdem_rule_models.LimitholdemRuleAgentV1()
agent2 = MCTS_Agent(action_num=env.action_num,
                    duration=duration,
                    exploration=explore,
                    model_action=model_action,
                    model_hand_rank=model_hand_rank)
env.set_agents([agent2, agent1])
eval_env.set_agents([agent2, agent1])

for i in range(num_tournaments):
Esempio n. 15
0
def train_uno():
    # Make environment
    env = rlcard.make("uno", config={"seed": 0})
    eval_env = rlcard.make("uno", config={"seed": 0})

    # Set the iterations numbers and how frequently we evaluate the performance
    evaluate_every = 100
    evaluate_num = 1000
    episode_num = 3000

    # The intial memory size
    memory_init_size = 1000

    # Train the agent every X steps
    train_every = 100

    # The paths for saving the logs and learning curves
    log_dir = "./experiments/uno_results_dqn/"

    # Set a global seed
    set_global_seed(0)

    params = {
        "scope": "DQN-Agent",
        "num_actions": env.action_num,
        "replay_memory_size": memory_init_size,
        "num_states": env.state_shape,
        "discount_factor": 0.99,
        "epsilon_start": 1.0,
        "epsilon_end": 0.1,
        "epsilon_decay_steps": 20000,
        "batch_size": 32,
        "train_every": 1,
        "mlp_layers": [512, 512],
        "lr": 0.0005,
    }

    agent_conf = DQN_conf(**params)
    agent = DQN_agent(agent_conf)

    random_agent = RandomAgent(action_num=eval_env.action_num)
    env.set_agents([agent, random_agent])
    eval_env.set_agents([agent, random_agent])

    logger = Logger(log_dir)

    for episode in range(episode_num):

        # Generate data from the environment
        trajectories, _ = env.run(is_training=True)

        # Feed transitions into agent memory, and train the agent
        for ts in trajectories[0]:
            agent.feed(ts)

        # Evaluate the performance. Play with random agents.
        if episode % evaluate_every == 0:
            logger.log_performance(env.timestep,
                                   tournament(eval_env, evaluate_num)[0])

    # Close files in the logger
    logger.close_files()

    # Plot the learning curve
    logger.plot("DQN UNO")

    # Save model
    save_dir = "models/uno_dqn_pytorch"
    if not os.path.exists(save_dir):
        os.makedirs(save_dir)
    state_dict = agent.get_state_dict()
    print(state_dict.keys())
    torch.save(state_dict, os.path.join(save_dir, "model.pth"))
Esempio n. 16
0
def train(args):

    # Check whether gpu is available
    device = get_device()

    # Seed numpy, torch, random
    set_seed(args.seed)

    # Make the environment with seed
    env = rlcard.make(args.env, config={
        'seed': args.seed,
    })

    # Initialize the agent and use random agents as opponents
    if args.algorithm == 'dqn':
        from rlcard.agents import DQNAgent
        agent = DQNAgent(
            num_actions=env.num_actions,
            state_shape=env.state_shape[0],
            mlp_layers=[64, 64],
            device=device,
        )
    elif args.algorithm == 'nfsp':
        from rlcard.agents import NFSPAgent
        agent = NFSPAgent(
            num_actions=env.num_actions,
            state_shape=env.state_shape[0],
            hidden_layers_sizes=[64, 64],
            q_mlp_layers=[64, 64],
            device=device,
        )
    agents = [agent]
    for _ in range(1, env.num_players):
        agents.append(RandomAgent(num_actions=env.num_actions))
    env.set_agents(agents)

    # Start training
    with Logger(args.log_dir) as logger:
        for episode in range(args.num_episodes):

            if args.algorithm == 'nfsp':
                agents[0].sample_episode_policy()

            # Generate data from the environment
            trajectories, payoffs = env.run(is_training=True)

            # Reorganaize the data to be state, action, reward, next_state, done
            trajectories = reorganize(trajectories, payoffs)

            # Feed transitions into agent memory, and train the agent
            # Here, we assume that DQN always plays the first position
            # and the other players play randomly (if any)
            for ts in trajectories[0]:
                agent.feed(ts)

            # Evaluate the performance. Play with random agents.
            if episode % args.evaluate_every == 0:
                logger.log_performance(
                    env.timestep,
                    tournament(
                        env,
                        args.num_eval_games,
                    )[0])

        # Get the paths
        csv_path, fig_path = logger.csv_path, logger.fig_path

    # Plot the learning curve
    plot_curve(csv_path, fig_path, args.algorithm)

    # Save model
    save_path = os.path.join(args.log_dir, 'model.pth')
    torch.save(agent, save_path)
    print('Model saved in', save_path)
Esempio n. 17
0
                         scope='dqn',
                         action_num=env.action_num,
                         replay_memory_init_size=memory_init_size,
                         train_every=train_every,
                         state_shape=env.state_shape,
                         mlp_layers=[512, 512])
    mcts_agent = MCTS_Agent(env.action_num, duration, explore, model_action,
                            model_hand_rank)
    env.set_agents([mcts_agent, dqn_agent])
    eval_env.set_agents([mcts_agent, dqn_agent])

    # Initialize global variables
    sess.run(tf.global_variables_initializer())

    # Init a Logger to plot the learning curve
    logger_mcts = Logger(log_dir_mcts)
    logger_dqn = Logger(log_dir_dqn)

    for episode in range(episode_num):

        # Generate data from the environment
        trajectories, _ = env.run(is_training=True)

        # Feed transitions into agent memory, and train the agent
        for ts in trajectories[0]:
            dqn_agent.feed(ts)

        # Evaluate the performance. Play with random agents.
        if episode % evaluate_every == 0:
            logger_mcts.log_performance(env.timestep,
                                        tournament(eval_env, evaluate_num)[0])
Esempio n. 18
0
def main():
    # Make environment
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    env = rlcard.make('no-limit-holdem', config={'seed': 0, 'env_num': 4})
    eval_env = rlcard.make('no-limit-holdem', config={'seed': 0, 'env_num': 4})

    # Set the iterations numbers and how frequently we evaluate performance
    evaluate_every = 5000
    selfplay_every = 25000
    evaluate_num = 10000
    iteration_num = 8000000

    # The intial memory size
    memory_init_size = 100

    # Train the agent every X steps
    train_every = 1

    agent = DQNAgent(num_actions=env.num_actions,
                     state_shape=env.state_shape[0],
                     mlp_layers=[64, 64, 64, 64],
                     device=device)

    agents = [agent, load_model("model.pth")]

    env.set_agents(agents)

    with Logger('./') as logger:
        for episode in range(iteration_num):

            # Generate data from the environment
            trajectories, payoffs = env.run(is_training=True)

            # Reorganaize the data to be state, action, reward, next_state, done
            trajectories = reorganize(trajectories, payoffs)

            # Feed transitions into agent memory, and train the agent
            # Here, we assume that DQN always plays the first position
            # and the other players play randomly (if any)
            for ts in trajectories[0]:
                agent.feed(ts)

            # Evaluate the performance. Play with random agents.
            if episode % evaluate_every == 0:
                logger.log_performance(env.timestep,
                                       tournament(env, evaluate_num)[0])
            if episode % selfplay_every == 0:
                save_path = os.path.join('./', str(episode) + "model.pth")
                torch.save(agent, save_path)
                print('Model saved in', save_path)
                agents = [agent, load_model(str(episode) + "model.pth")]
                env.set_agents(agents)

        # Get the paths
        csv_path, fig_path = logger.csv_path, logger.fig_path

    # Plot the learning curve
    #plot_curve(csv_path, fig_path, args.algorithm)

    # Save model
    save_path = os.path.join('./', 'model.pth')
    torch.save(agent, save_path)
    print('Model saved in', save_path)

    # The paths for saving the logs and learning curves
    log_dir = './experiments/nlh_cfr_result/'

    # Set a global seed
    set_seed(0)
Esempio n. 19
0
    # Initialize a global step
    global_step = tf.Variable(0, name='global_step', trainable=False)

    # Set up the agents
    agent = DQNAgent(sess,
                     scope='dqn',
                     action_num=env.action_num,
                     replay_memory_init_size=memory_init_size,
                     train_every=train_every,
                     state_shape=env.state_shape,
                     mlp_layers=[128, 128])
    # Initialize global variables
    sess.run(tf.compat.v1.global_variables_initializer())

    # Init a Logger to plot the learning curve
    logger = Logger(log_dir)

    state = env.reset()

    for timestep in range(timesteps):
        action = agent.step(state)
        next_state, reward, done = env.step(action)
        ts = (state, action, reward, next_state, done)
        agent.feed(ts)

        if timestep % evaluate_every == 0:
            rewards = []
            state = eval_env.reset()
            for _ in range(evaluate_num):
                action, _ = agent.eval_step(state)
                _, reward, done = env.step(action)
Esempio n. 20
0
    # Set up the agents
    agent = RandomAgent(action_num=env.action_num)

    random_agent = RandomAgent(action_num=eval_env.action_num)
    env.set_agents([agent, random_agent, random_agent])
    eval_env.set_agents([random_agent, random_agent, random_agent])

    env.set_landlord_score(landlord_score)
    eval_env.set_landlord_score(landlord_score)
    # Initialize global variables
    sess.run(tf.global_variables_initializer())

    # Init a Logger to plot the learning curve
    log_dir = './experiments/doudizhu_random_result/'
    logger = Logger(log_dir)
    logger.log_parameters(parameter_dict)

    for episode in range(episode_num):

        ## dont need these for random agent
        # Generate data from the environment
        #trajectories, _ = env.run(is_training=True)

        # Feed transitions into agent memory, and train the agent
        #for ts in trajectories[0]:
        #    agent.feed(ts)

        # Evaluate the performance. Play with random agents.
        if episode % evaluate_every == 0:
            payoffs, peasant_wins, landlord_wins = tournament(
Esempio n. 21
0
                          q_replay_memory_size=int(1e5),
                          q_replay_memory_init_size=memory_init_size,
                          train_every=train_every,
                          q_train_every=train_every,
                          q_batch_size=256,
                          q_mlp_layers=[512, 1024, 2048, 1024, 512])
        agents.append(agent)
    random_agent = RandomAgent(action_num=eval_env.action_num)
    env.set_agents(agents)
    eval_env.set_agents([agents[0], random_agent])

    # Initialize global variables
    sess.run(tf.compat.v1.global_variables_initializer())

    # Init a Logger to plot the learning curve
    logger = Logger(log_dir)

    for episode in range(episode_num):

        # First sample a policy for the episode
        for agent in agents:
            agent.sample_episode_policy()

        # Generate data from the environment
        trajectories, _ = env.run(is_training=True)

        # Feed transitions into agent memory, and train the agent
        for i in range(env.player_num):
            for ts in trajectories[i]:
                agents[i].feed(ts)
Esempio n. 22
0
        actor_layers=[64, 64],
        critic_layers=[64, 64],
    )
    random_agent = RandomAgent(action_num=eval_env.action_num)
    env.set_agents([agent, random_agent])
    eval_env.set_agents([agent, random_agent])

    # Initialize global variables
    sess.run(tf.global_variables_initializer())

    # Include this line to verify graph not being updated in each iteration. This helps identify memory leaks.
    # Leave uncommented since tf.train.Saver() below is a graph operation.
    # sess.graph.finalize()

    # Init a Logger to plot the learning curve
    logger = Logger(log_dir)
    start_time = time.time()
    for episode in range(episode_num):
        # Generate data from the environment
        trajectories, _ = env.run(is_training=True)

        # Feed transitions into agent memory, and train the agent
        for ts in trajectories[0]:
            agent.feed(ts)

        # Evaluate the performance. Play with random agents.
        if episode % evaluate_every == 0:
            if episode > 0:
                current_time = time.time()
                episodes_per_sec = episode / (current_time - start_time)
                remaining_mins = (episode_num -
Esempio n. 23
0
def nfsp():
    import tensorflow as tf
    if tf.test.gpu_device_name():
        print('GPU found')
    else:
        print("No GPU found")

    #os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

    # Make environment
    env = rlcard.make('no-limit-holdem',
                      config={
                          'game_player_num': 2,
                          'seed': 477
                      })
    eval_env = rlcard.make('no-limit-holdem',
                           config={
                               'seed': 12,
                               'game_player_num': 2
                           })
    eval_env2 = rlcard.make('no-limit-holdem',
                            config={
                                'seed': 43,
                                'game_player_num': 2
                            })
    #eval_env3 = rlcard.make('no-limit-holdem', config={'seed': 43, 'game_player_num': 2})
    # Set the iterations numbers and how frequently we evaluate the performance

    # The intial memory size
    memory_init_size = 1000

    # The paths for saving the logs and learning curves
    log_dir = './experiments/nolimit_holdem_nfsp_result/no_all_in'

    # Set a global seed
    set_global_seed(477)

    graph = tf.Graph()
    tf.ConfigProto()
    sess = tf.Session(graph=graph)

    evaluate_every = 2048
    evaluate_num = 32
    episode_num = 24576

    # The intial memory size
    memory_init_size = 256

    # Train the agent every X steps
    train_every = 256
    agents = []
    with graph.as_default():
        """
        def __init__(self,
                 sess,
                 scope,
                 action_num=4,
                 state_shape=None,
                 hidden_layers_sizes=None,
                 reservoir_buffer_capacity=int(1e6),
                 anticipatory_param=0.1,
                 batch_size=256,
                 train_every=1,
                 rl_learning_rate=0.1,
                 sl_learning_rate=0.005,
                 min_buffer_size_to_learn=1000,
                 q_replay_memory_size=30000,
                 q_replay_memory_init_size=1000,
                 q_update_target_estimator_every=1000,
                 q_discount_factor=0.99,
                 q_epsilon_start=0.06,
                 q_epsilon_end=0,
                 q_epsilon_decay_steps=int(1e6),
                 q_batch_size=256,
                 q_train_every=1,
                 q_mlp_layers=None,
                 evaluate_with='average_policy'):
        """

        # Model1v1V3cp10good
        agents.append(
            NFSPAgent(sess,
                      scope='nfsp' + str(0),
                      action_num=env.action_num,
                      state_shape=env.state_shape,
                      hidden_layers_sizes=[512, 512],
                      anticipatory_param=0.1,
                      rl_learning_rate=0.01,
                      sl_learning_rate=0.005,
                      q_epsilon_start=.7,
                      min_buffer_size_to_learn=memory_init_size,
                      q_replay_memory_size=80000,
                      q_replay_memory_init_size=memory_init_size,
                      train_every=train_every + 44,
                      q_train_every=train_every,
                      q_mlp_layers=[512, 512]))

        agents.append(
            NFSPAgent(sess,
                      scope='nfsp' + str(1),
                      action_num=env.action_num,
                      state_shape=env.state_shape,
                      hidden_layers_sizes=[512, 512],
                      anticipatory_param=0.1,
                      rl_learning_rate=0.01,
                      sl_learning_rate=0.005,
                      q_epsilon_start=.7,
                      q_replay_memory_size=80000,
                      min_buffer_size_to_learn=memory_init_size,
                      q_replay_memory_init_size=memory_init_size,
                      train_every=train_every + 44,
                      q_train_every=train_every,
                      q_mlp_layers=[512, 512]))

    # check_point_path = os.path.join('models\\nolimit_holdem_nfsp\\iivan')
    print(
        '-------------------------------------------------------------------------------------'
    )
    # print(check_point_path)

    #todays project :)
    # https://stackoverflow.com/questions/33758669/running-multiple-tensorflow-sessions-concurrently
    with sess.as_default():
        with graph.as_default():
            # saver = tf.train.Saver()
            # saver.restore(sess, tf.train.latest_checkpoint(check_point_path))

            global_step = tf.Variable(0, name='global_step', trainable=False)
            random_agent = RandomAgent(action_num=eval_env2.action_num)

            env.set_agents(agents)
            eval_env.set_agents([agents[0], random_agent])
            eval_env2.set_agents([random_agent, agents[1]])
            # eval_env3.set_agents([agents[1], random_agent])

            # Initialize global variables
            sess.run(tf.global_variables_initializer())

            # Init a Logger to plot the learning curve
            logger = Logger(log_dir)

            for episode in range(episode_num):
                print(episode, end='\r')
                #print('oh')

                # First sample a policy for the episode
                for agent in agents:
                    agent.sample_episode_policy()

                # Generate data from the environment
                trajectories, _ = env.run(is_training=True)
                # Feed transitions into agent memory, and train the agent
                for i in range(env.player_num):
                    for ts in trajectories[i]:
                        agents[i].feed(ts)

                # Evaluate the performance. Play with random agents.
                if episode % evaluate_every == 0:
                    logger.log(
                        '\n\n\n---------------------------------------------------------------\nTournament '
                        + str(episode / evaluate_every))
                    # tournament(eval_env2, 6)
                    # exploitability.exploitability(eval_env, agents[0], 500)

                    res = tournament(env, evaluate_num)
                    logger.log_performance(env.timestep, res[0])
                    res2 = tournament(eval_env, evaluate_num // 3)
                    logger.log_performance(env.timestep, res2[0])
                    res3 = tournament(eval_env2, evaluate_num // 3)
                    logger.log_performance(env.timestep, res3[0])
                    logger.log('' + str(episode_num) + " - " + str(episode) +
                               '\n')
                    logger.log(
                        '\n\n----------------------------------------------------------------'
                    )

                if episode % (evaluate_every) == 0 and not episode == 0:
                    save_dir = 'models/nolimit_holdem_nfsp/no_all_in/cp/' + str(
                        episode // evaluate_every)
                    if not os.path.exists(save_dir):
                        os.makedirs(save_dir)
                    saver = tf.train.Saver()
                    saver.save(sess, os.path.join(save_dir, 'model'))

            logger.log(
                '\n\n\n---------------------------------------------------------------\nTournament '
                + str(episode / evaluate_every))
            res = tournament(eval_env, evaluate_num)
            logger.log_performance(env.timestep, res[0])
            logger.log('' + str(episode_num) + " - " + str(episode))

            # Close files in the logger
            logger.close_files()

            # Plot the learning curve
            logger.plot('NFSP')

            # Save model
            save_dir = 'models/nolimit_holdem_nfsp/no_all_in'
            if not os.path.exists(save_dir):
                os.makedirs(save_dir)
            saver = tf.train.Saver()
            saver.save(sess, os.path.join(save_dir, 'model'))
Esempio n. 24
0
                              train_every=train_every,
                              q_train_every=train_every,
                              q_batch_size=256,
                              q_mlp_layers=[512, 1024, 2048, 1024, 512])
            agents.append(agent)
        random_agent = RandomAgent(action_num=eval_env.action_num)

        env.set_agents(agents)
        eval_env.set_agents([agents[0], random_agent])

        # Initialize global variables
        sess.run(tf.global_variables_initializer())

        # Init a Logger to plot the learning curvefrom rlcard.agents.random_agent import RandomAgent

        logger = Logger(log_dir)

        for episode in range(episode_num):
            print("Episode: " + str(episode))

            # First sample a policy for the episode
            for agent in agents:
                agent.sample_episode_policy()

            # Generate data from the environment
            trajectories, _ = env.run(is_training=True)

            # Feed transitions into agent memory, and train the agent
            for i in range(env.player_num):
                for ts in trajectories[i]:
                    agents[i].feed(ts)
from rlcard.utils import set_global_seed, tournament
from SeedRanomAgent import SRandomAgent
from rlcard.utils import Logger
from eval_util import *

# Set the iterations numbers and how frequently we evaluate/save plot
evaluate_num = 100
emu_num = 50

log_dir = './experiments/doudizhu_mcts_vs_drqn_result/'
best_model_path = './models/doudizhu_train_drqn_as_L_vs_random_and_eval_vs_random_best.npy'

# Set a global seed

# Init a Logger to plot the learning curve
logger = Logger(log_dir)

logger.log("MCTS-UCT VS DRQN")

env = rlcard.make('doudizhu', config={'seed': 0, 'allow_step_back': True})

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
sess = tf.Session(config=config)

drqn_agent = DRQNAgent(sess,
                       scope='doudizhu_drqn',
                       action_num=env.action_num,
                       memory_init_size=3000,
                       memory_size=6000,
Esempio n. 26
0
        elif(role==2):
            agent_list = [random_agent, random_agent, agent]
            parameter_dict['always_peasant_2'] = True
    '''
    # set agents in environment
    env.set_agents(agent_list)
    eval_env.set_agents(agent_list)
    env.set_landlord_score(landlord_score)
    eval_env.set_landlord_score(landlord_score)
    eval_env.set_eval_agent(role)
    # Initialize global variables
    sess.run(tf.global_variables_initializer())

    # Init a Logger to plot the learning curve
    log_dir = './results/doudizhu_dqn_result/'
    logger = Logger(log_dir)
    logger.log_parameters(parameter_dict)

    role_counter = role

    for episode in range(episode_num):

        # Generate data from the environment
        trajectories, _ = env.run(is_training=True)

        # Feed transitions into agent memory, and train the agent
        for ts in trajectories[0]:
            agent.feed(ts)

        # Evaluate the performance. Play with random agents.
        if episode % evaluate_every == 0:
Esempio n. 27
0
                          train_every=train_every,
                          q_train_every=train_every,
                          q_batch_size=256,
                          q_mlp_layers=[512, 1024, 2048, 1024, 512])
        agents.append(agent)
    random_agent = RandomAgent(action_num=eval_env.action_num)

    env.set_agents(agents)
    eval_env.set_agents([agents[0], random_agent, random_agent])

    # Initialize global variables
    sess.run(tf.global_variables_initializer())

    # Init a Logger to plot the learning curvefrom rlcard.agents.random_agent import RandomAgent

    logger = Logger(log_dir)

    for episode in range(episode_num):

        # First sample a policy for the episode
        for agent in agents:
            agent.sample_episode_policy()

        # Generate data from the environment
        trajectories, _ = env.run(is_training=True)

        # Feed transitions into agent memory, and train the agent
        for i in range(env.player_num):
            for ts in trajectories[i]:
                agents[i].feed(ts)
episode_num = 100000

# The intial memory size
memory_init_size = 100
memory_size = 6000
# Train the agent every X steps
train_every = 1

# The paths for saving the logs and learning curves
log_dir = './experiments/doudizhu_train_dqn_as_L_vs_random_and_eval_vs_random'
loss_log = os.path.join(log_dir,'loss')
L_WR_log = os.path.join(log_dir,'L_WR')
P_WR_log = os.path.join(log_dir,'P_WR')


logger = Logger(log_dir)
loss_logger = Logger(loss_log)
L_WR_logger = Logger(L_WR_log)
P_WR_logger = Logger(P_WR_log)


best_model_path = './models/doudizhu_train_dqn_as_L_vs_random_and_eval_vs_random_best'
max_P_WR = 0.0
max_L_WR = 0.0
# Set a global seed
set_global_seed(0)

config = tf.ConfigProto()
config.gpu_options.allow_growth = True

os.environ["CUDA_VISIBLE_DEVICES"] = "2"
Esempio n. 29
0
    agent = DQNAgent(sess,
                     scope='dqn',
                     action_num=env.action_num,
                     replay_memory_init_size=memory_init_size,
                     train_every=train_every,
                     state_shape=env.state_shape,
                     mlp_layers=[512, 512])
    random_agent = RandomAgent(action_num=eval_env.action_num)
    env.set_agents([agent, random_agent, random_agent])
    eval_env.set_agents([agent, random_agent, random_agent])

    # Initialize global variables
    sess.run(tf.global_variables_initializer())

    # Init a Logger to plot the learning curve
    logger = Logger(log_dir)

    for episode in range(episode_num):

        # Generate data from the environment
        trajectories, _ = env.run(is_training=True)

        # Feed transitions into agent memory, and train the agent
        for ts in trajectories[0]:
            agent.feed(ts)

        # Evaluate the performance. Play with random agents.
        if episode % evaluate_every == 0:
            logger.log_performance(env.timestep,
                                   tournament(eval_env, evaluate_num)[0])
Esempio n. 30
0
    # env.set_agents([agents[0], rule_agent, agents[0], rule_agent])
    # eval_env.set_agents([agents[0], rule_agent, agents[0], rule_agent])

    # 4 dqn agent with single brain
    env.set_agents([agents[0], agents[0], agents[0], agents[0]])
    eval_env.set_agents([agents[0], rule_agent, agents[0], rule_agent])

    # 4 dqn agent with two brains
    # env.set_agents([agents[0], agents[1], agents[0], agents[1]])
    # eval_env.set_agents([agents[0], rule_agent, agents[0], rule_agent])

    # Initialize global variables
    sess.run(tf.global_variables_initializer())

    # Init a Logger to plot the learning curve
    logger = Logger(save_dir)

    # Init moving average calculator
    m_avg = MovingAvg(100)
    payoff_avg = MovingAvg(100)

    # load the pre-trained model
    check_point_path = os.path.join(TRACTOR_PATH, 'tractor_dqn_430k')
    saver = tf.train.Saver()
    saver.restore(sess, tf.train.latest_checkpoint(check_point_path))
    graph = tf.get_default_graph()
    print('INFO: Loaded model from {}'.format(check_point_path))

    t = trange(episode_num, desc='rl-loss:', leave=True)
    for episode in t:
        # Generate data from the environment